
HugoManual

Paolo Vece

HugoManual ii

COLLABORATORS

TITLE :

HugoManual

ACTION NAME DATE SIGNATURE

WRITTEN BY Paolo Vece June 25, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

HugoManual iii

Contents

1 HugoManual 1

1.1 HUGO v2.3 PROGRAMMING MANUAL . 1

1.2 INTRODUCTION . 4

1.3 A FIRST LOOK AT HUGO . 10

1.4 OBJECTS . 17

1.5 HUGO PROGRAMMING . 30

1.6 ROUTINES AND EVENTS . 54

1.7 FUSES, DAEMONS, AND SCRIPTS . 66

1.8 GRAMMAR AND PARSING . 71

1.9 JUNCTION ROUTINES . 77

1.10 THE GAME LOOP . 82

1.11 ADVANCED FEATURES . 83

1.12 APPENDIX A: SUMMARY OF KEYWORDS AND COMMANDS . 85

1.13 APPENDIX B: THE LIBRARY (HUGOLIB.H) . 102

1.14 APPENDIX C: LIMIT SETTINGS . 121

1.15 APPENDIX D: PRECOMPILED HEADERS . 122

1.16 APPENDIX E: THE HUGO DEBUGGER . 123

1.17 Copyright . 125

1.18 AmigaGuide® version . 125

1.19 INDEX . 125

HugoManual 1 / 128

Chapter 1

HugoManual

1.1 HUGO v2.3 PROGRAMMING MANUAL

HUGO v2.3

PROGRAMMING MANUAL

Copyright (c) 1995-1997 by
Kent Tessman

This AmigaGuide® version
was made by

Paolo Vece

TABLE OF CONTENTS

I.
INTRODUCTION

I.a.
Legal notes

I.b.
Names and acknowledgements

I.c.
Packing list

I.d.
Manual conventions

I.e.
Getting started

I.f.
Compiler switches

I.g.
Limit settings

I.h.
Directories

EXAMPLE:
Command-line compiling

I.i.

HugoManual 2 / 128

The Engine
II.
A FIRST LOOK AT HUGO

II.a.
Hello, Sailor!

II.b.
Data types

II.c.
Comments

II.d.
Multiple lines

II.e.
Compiler errors

II.f.
Compiler directives

III.
OBJECTS

III.a.
The object tree

III.b.
Attributes

III.c.
Properties

III.d.
Classes

IV.
HUGO PROGRAMMING

IV.a.
Variables

IV.b.
Constants

IV.c.
Printing text

EXAMPLE:
Mixing text styles

IV.d.
More control characters

IV.e.
Operators and assignments

IV.f.
Efficient operators

IV.g.
Arrays and strings

EXAMPLE:
Managing strings

IV.h.
Conditional expressions and program flow

V.
ROUTINES AND EVENTS

V.a.
Routines

V.b.
Property routines

EXAMPLE:
’Borrowing’ property routines

V.c.
Before and after routines

HugoManual 3 / 128

EXAMPLE:
Building a complex object~

V.d.
Init and main

V.e.
Events

EXAMPLE:
Building a clock event

VI.
FUSES, DAEMONS, AND SCRIPTS

VI.a.
Fuses and daemons

EXAMPLE:
A simple daemon and simpler fuse

VI.b.
Scripts

VI.c.
A note about the event_flag global

VII.
GRAMMAR AND PARSING

VII.a.
Grammar definition

VII.b.
The parser

VIII.
JUNCTION ROUTINES

VIII.a.
Parse

VIII.b.
ParseError

VIII.c.
EndGame

VIII.d.
FindObject

VIII.e.
SpeakTo

IX.
THE GAME LOOP

X.
ADVANCED FEATURES

X.a.
Reading and writing files

APPENDIX A:
SUMMARY OF KEYWORDS AND COMMANDS

APPENDIX B:
THE LIBRARY (HUGOLIB.H)

Attributes

Globals, constants, and arrays

Properties

Routines

Conditional compilation
APPENDIX C:

HugoManual 4 / 128

LIMIT SETTINGS
APPENDIX D:
PRECOMPILED HEADERS

APPENDIX E:
THE HUGO DEBUGGER

INDEX
OF KEYWORDS AND COMMANDS

1.2 INTRODUCTION

I. INTRODUCTION

Hugo is a system for designing, programming, and running
sophisticated interactive fiction, or text adventures. It is the
result of an attempt to further extend the concepts developed in
earlier, similar systems in order to make interactive fiction
programming less cryptic and more accessible to designers. Hugo
owes much to the original Infocom format (particularly with regard
to its internal data tables) as well as to Graham Nelson’s publicly
distributed Inform compiler (and its excellent grammar definition
and programming style).

The best advice to be given for learning Hugo is probably to print
the source listing of SAMPLE.HUG, and refer to it throughout;
examples of almost all of Hugo’s features may be found in it.

I.a. LEGAL NOTES

Programs created using the Hugo Compiler are the property of the
individual author. Note, however, that the library files are
copyright by Kent Tessman, the creator of Hugo, as is the Hugo
Engine.

The use of the Hugo library files and the distribution of the Hugo
Engine are authorized so long as all transactions are non-commercial
and free of charge, and that the library files and engine are not
distributed in a modified form.

For those interested in the commercial distribution of a program
created with the Hugo Compiler, please contact Kent Tessman for
permission.

NOTE: Since the Hugo Compiler and Engine are provided free of
charge, there is no warranty for their use.

HugoManual 5 / 128

I.b. NAMES AND ACKNOWLEDGEMENTS

Those who have taken upon themselves the (sometimes trying, I’m
sure) task of porting Hugo to various platforms are:

David Kinder Amiga
Bill Lash Unix (i.e. Solaris OS, Linux, etc.)
Colin Turnbull Acorn Archimedes

The author is considerably indebted to them, for all their work as
well as for their input on how to improve the compiler and engine.

A few words of appreciation are due Volker Blasius who (now with
help from David Kinder) has had the substantial responsibility of
maintaining the Interactive Fiction Archive at ftp://ftp.gmd.de--one
of the key resources for Hugo programmers and a primary hub of
material for contributors to (and readers of) the newsgroups
rec.arts.int-fiction and rec.games.int-fiction.

More than a little acknowledgement and thanks are due Graham Nelson,
whose Inform language helped give shape to Hugo’s early syntax and
structure.

Thanks also to those whose comments and suggestions have contributed
to making Hugo as useful and usable as it is: Dr. Jeff Jenness,
Vikram Ravindran, Jesse McGrew, and Paolo Vece.

Special thanks to Jim Newland and Julian Arnold: Jim, for his work
on the nefarious plural/identical-objects architecture that found
its way into OBJLIB.H (and actually coaxed that aspect of the object
library into existence)--one of many, many valuable contributions to
Hugo’s development; and Julian for asking time and time again
"Wouldn’t it be better if...?"

Finally, my brother Dean Tessman has given valuable input to the
system’s development, particularly with the advent of the Debugger,
and his views on user interfaces and the occasional head-shake
followed by "I don’t think that’s gonna fly..." are much
appreciated.

I.c. PACKING LIST

A number of files are part of the basic Hugo package:

(NOTE: Throughout this manual, the default naming convention is for
MS-DOS. As Hugo becomes available for other systems, file naming
conventions may vary, and any machine-specific documentation should
document those variations.)

HC.EXE Hugo Compiler (hc on Amiga)
HE.EXE Hugo Engine ("Hugo Engine" on Amiga)
HD.EXE Hugo Debugger (hd on Amiga)
HDHELP.HLP Debugger help file

HugoManual 6 / 128

HUGOLIB.H Library definitions and routines
GRAMMAR.G Standard grammar definitions
OBJLIB.H A library of useful object definitions

(included by HUGOLIB.H)

SAMPLE.HUG Sample game source code
SHELL.HUG Source code to build on

And two sets of files that, depending on user-specifiable settings,
are optionally included by HUGOLIB.H and GRAMMAR.G:

HUGOFIX.H Debugging routines
HUGOFIX.G Debugging grammar

VERBSTUB.H Additional verb routines
VERBSTUB.G Additional verb grammar

(An additional Hugo source file demonstrates the ability to create
precompiled headers:

HUGOLIB.HUG To create a #linkable version of HUGOLIB.H)

The latest release of Hugo is available through anonymous FTP from
ftp.gmd.de in if-archive/programming/hugo. Distribution of any of
the Hugo files is authorized only with permission of the author.

The .HUG, .H, and .G files are text files and must be downloaded as
such; the executables are binary files.

(FORMATTING NOTE: The above files are properly formatted for a
standard tab stop of 8 spaces; if the formatting appears incorrect,
adjust the tab size on your editor.)

I.d. MANUAL CONVENTIONS

The following conventions will (hopefully) be adhered to throughout
this manual in order to distinguish the following from plain text:

<parameter> for required parameters

[parameter] for optional parameters

FILE for specific filenames

KEYWORD for commands, functions, etc.

... for omissions

(Filenames and keywords may not appear in all-capitals when set
apart from the regular text of this manual, as in the invocation
examples below.)

HugoManual 7 / 128

I.e. GETTING STARTED

Type

hc

without any parameters to get a full listing of available compiler
options and specifications.

The MS-DOS syntax for running the compiler is

hc [-switches] <sourcefile[.HUG]> <objectfile>

It is not necessary to specify any switches, the name of the
objectfile, or the sourcefile extension. The bare-bones version of
the compiler invocation is

hc <sourcefile>

With no other parameters explicitly described, the compiler assumes
an extension of .HUG. The default object filename is
<sourcefile>.HEX.

Here’s how to compile the sample game. With the compiler
executable, library files, and sample game source code all in the
current directory, type

hc -ls sample.hug

or simply

hc -ls sample

and after a few seconds (or more, or less, depending on your
processor and configuration) a screenful of statistical information
will appear following the completed compilation (because of the -s
switch).

The new file SAMPLE.HEX will have appeared in current directory. As
well, the -l switch wrote all compile-time output (which would have
included errors, had there been any) to the file SAMPLE.LST.

I.f. COMPILER SWITCHES

A number of switches may be selected via the invocation line. The
available options are:

-a Abort compilation on any error
-d compile as an .HDX debuggable executable
-f Full object summaries
-h compile in .HLB precompiled Header format
-i display debugging Information

HugoManual 8 / 128

-l print Listing to disk as <sourcefile>.LST
-o display Object tree
-p send output to standard Printer
-s print compilation Statistics
-u show memory Usage for objectfile
-x ignore switches in source code
-z inhibit normal compilation messages

Most Hugo programming will probably make us of the -l switch in
order to record compile-time errors.

The -z switch may, on some configurations, increase compilation
speed by inhibiting normal messaging (i.e. "Compiling...lines of..."
and "...percent complete").

I.g. LIMIT SETTINGS

Also included on the invocation line, after any switches and before
the sourcefile, may be one or more limit settings. These settings
are for memory management, and limit the number of certain types of
program elements, such as objects and dictionary entries.

To list the settings, type:

hc $list

To change a non-static limit, type:

hc $<setting>=<new limit> <sourcefile>...

For example, to compile the sample game with the maximum number of
dictionary entries doubled from the default limit of 1024, and with
the -l and -s switches set,

hc -ls $MAXDICT=2048 sample

If a compile-time error is generated indicating that too many
symbols of a particular type have been declared, it is probably
possible to overcome this simply by recompiling with a higher limit
for that setting specified in the invocation line.

See Appendix C for a complete listing of valid limit settings.

I.h. DIRECTORIES

It is possible to specify where the Hugo Compiler will look for
different types of files. This can be done in the command line via:

hc @<directory>=<real directory>

For example, to specify that the source files are to be taken from

HugoManual 9 / 128

the directory Work:Hugo/Source, invoke the compiler with

hc @source=Work:Hugo/Source <filename>

Valid directories are:

source Source files
object Where the new .HEX file will be created
lib Library files
list .LST files
temp Temporary compilation files (if any)

Advanced users may take advantage of the ability to set default
directories using environment variables. (The method for setting an
environment variable may vary from operating system to operating
system.)

The HUGO_<NAME> environment variable may be set to the <name>
directory. For example, the source directory may be set with the
HUGO_SOURCE environment variable.

Command-line-specified directories take precedence over those set in
environment variables. In either case, if the file is not found in
the specified directory, the current directory is searched.

EXAMPLE: COMMAND-LINE COMPILING

On the porter’s machine, running under Amiga, the compiler
executable HC is in a directory called Work:Hugo. The library
files are in Work:Hugo/Lib, and the source code for the game Spur is
in Work:Hugo/Spur.

What would the command line look like in order to compile Spur,
including setting compiler flags to include the HugoFix debugging
library and verb stub routines, and printing all debugging
information, the object tree, and statistics to a file? (Assume
that the current directory is Work:Hugo and that none of the switches
or compiler flags are set in the source.)

ANSWER:

hc -iols #debug #verbstubs @source=spur @lib=lib spur

I.i. THE ENGINE

Having compiled the sample game, run it by invoking

he sample

Again, it is not necessary to specify the extension. The engine
assumes .HEX if none is given.

HugoManual 10 / 128

(NOTE: The environment variable HUGO_OBJECT or HUGO_GAMES may hold
the directory that the Hugo Engine searches for the specified .HEX
file. The location for save files may be specified with HUGO_SAVE.
All of these are optional.)

1.3 A FIRST LOOK AT HUGO

II. A FIRST LOOK AT HUGO

There are a couple of basic concepts to become oriented to in order
to begin working with Hugo.

First of all, most programming in Hugo will involve the creation of
what are called "objects". Quite literally, these represent the
elements of the game universe: people, places, and things.

The bulk of the rest of a Hugo program is comprised of "routines".
These are the sections of code made up of commands or statements
that facilitate the actual behavior of the program at different
points in the story. Routines are less frequently (although more
frequently in other languages) called "functions"--they may be
thought of as performing an operation or series of operations, and
then returning some kind of value as a result.

(The idea of return values is an important one and, while sometimes
puzzling to novices, is actually quite uncomplicated. Often a
particular function will be referred to as "returning true" or
"returning false"--all this means is that it returns either a non-
zero value (usually 1) or a zero value, almost always to indicate
success or failure. A program will constantly be checking the
return values of a variety of routines and commands to determine if
a particular operation was successful in order to decide what to do
next. Of course, a return value can be any integer value; a routine
that adds together two supplied values, a and b, may return the sum
a+b.)

For those familiar with the common programming languages C and
BASIC, Hugo strongly resembles a hybrid of the two. Individual
objects and routines--as well as conditional blocks--are enclosed in
braces as in C, but unlike C (and like BASIC), a semicolon is not
required at the end of each line, and the language itself is
considerably less cryptic. Keywords, variables, routine and object
names, and other tokens are not case-sensitive.

The goal in designing Hugo was to make programming as intuitive to
facilitate both initial development and subsequent debugging.

II.a. HELLO, SAILOR!

HugoManual 11 / 128

The grand (recent) tradition of programming texts has an
introduction to a new programming language detailing how to print
the optimistic phrase "Hello, world" as an example of the particular
language’s form and substance.

In the equally grand tradition of interactive fiction, we’ll start
with the rallying cry "Hello, Sailor!". Don’t worry too much about
the syntax below; this is meant mainly as a familiarization with
what Hugo looks like.

routine main
{

print "Hello, Sailor!"
return

}

The entire program consists of one routine. (Two routines are
normally required for any Hugo program, the other being the Init
routine, which is omitted in this example since there isn’t much
required in the way of initialization.)

The Main routine is automatically called by the engine. It from
here that the central behavior of any Hugo program is controlled.
In this case the task at hand is the printing of "Hello, Sailor!",
followed by an order to return from the routine (i.e. exit it) so
that we don’t strand the program waiting for an input, which is the
normal order of Hugo business.

II.b. DATA TYPES

All data in Hugo is represented in terms of 16-bit integers, treated
as signed (-32767 to 32767) or unsigned (0 to 65535) as appropriate.
The name of any individual data type may contain up to 32
alphanumeric characters (as well as the underscore "_").

All of the following are valid data types:

Integer values 0, -10, 16800, -25005
(constant values that appear in Hugo source code as numbers)

ASCII characters ’A’, ’z’, ’7’
(constant values equal to the common ASCII value for a
character; i.e. 65 for ’A’)

Objects suitcase, emptyroom, player
(constant values representing the object number of the given
object)

Variables a, b, score, TEXTCOLOR
(changeable value-holders that may be set to equal another
variable or constant value)

Constants true, false, BANNER
(constant--obviously--values that are given a name similarly to

HugoManual 12 / 128

a variable, but are non-modifiable)

Dictionary entries "a", "the", "basketball"
(The appearance of "the" in a line of code actually refers to
the location in the dictionary table where "the" is stored.)

Array elements ranking[1]
(a series of one or more changeable values that may be
referenced from a common base point)

Array addresses ranking
(the base point--see above)

Properties nouns, short_desc, found_in
(variable attachments of data relating specifically to objects)

Attributes open, light, transparent
(less complex attachments of data describing an object, which
may be specified as either having or not having the given
attribute)

Most of these types are relatively straightforward, representing in
most cases a simple value. Dictionary entries are addresses in the
dictionary table, with the null string "" having the value 0. Array
addresses (as opposed to separate array elements) represent the
address at which the array begins in the array table. Properties
and attributes treated as discrete values represent the number of
that property or attribute, assigned sequentially as the individual
property or attribute is defined.

As mentioned, routines also return values, as do engine functions,
so that

FindLight(room)

and

parent(object)

are also valid integer data types.

Routine addresses are also stored as 16-bit integers. However,
those versed in such calculations will notice that if such a value
was treated as an absolute address, then any addressable executable
code would be limited to 64K in size. Such is not the case, since
the routine address is actually an indexed representation of the
absolute address.

NOTE: The 16-bit format of a routine address (or the address of a
property routine, to be discussed below), can obtained via the
address operator "&", as in:

x = &Routine
x = &object.property

(where x is a variable).

HugoManual 13 / 128

II.c. COMMENTS

There are two types of comments. Comments on a single line begin
with a ’!’. Anything following on the line is ignored. Multiple-
line comments are begun with !\ and ended with \!.

! A comment on a single line

!\ A multiple-line
comment \!

The !\ combination must come at the start of a line to be
significant; it cannot be preceded by any other statements or
remarks. Similarly, the \! combination must come at the end of a
line.

II.d. MULTIPLE LINES

If any single command is too long to fit on one line, it may be
split across several lines by ending all but the last with the
control character "\".

"This is an example string."

and
x = 5 + 6 * higher(a, b)

are the same as

"This is an example \
string."

x = 5 + 6 * \
higher(a, b)

The space at the end of the first line is necessary because the
compiler automatically trims leading spaces from the second line.

String constants, such as in the above print statement, are an
exception in that they do not require the "\" character at the end
of each line.

print "The engine will properly
print this text, assuming a
single space at the end of each
line."

will result in:

The engine will properly print this text, assuming a single
space at the end of each line.

HugoManual 14 / 128

Care must be taken, however, to ensure that the closing quotes are
not left off the string constant. Failing that, the compiler will
likely generate a "Closing brace missing" error when it overruns the
object/routine/event boundary looking for a resolution to the odd
number of quotation marks.

Also, most lines ending in a comma, "and", or "or" will
automatically fall through to the next line (if they occur in a line
of code). In other words,

x[0] = 1, 2, 3, ! array assignment of x[0] through x[4]
4, 5

and

if a = 5 and
b = "tall"

translate into

x[0] = 1, 2, 3, 4, 5

and

if a = 5 and b = "tall"

This is provided primarily so that lengthy lines and complex
expressions do not have to run off the right-hand side of the screen
during editing, nor do they continually need to be extended using
"\" and the end of each line.

(NOTE: Multiple lines that are not strictly code, such as property
assignments in object definitions--to be discussed--must still be
joined with "\", as in

nouns "plant", "flower", "marigold", \
"fauna", "greenery"

and similar cases, even if they end in a comma.)

There is a complement to the "\" control character: the ":"
character allows multiple lines to be put together on a single line,
i.e.

x = 5 : y = 1

or

if i = 1: print "Less than three."

Which the compiler translates to

x = 5
y = 1

and

HugoManual 15 / 128

if i = 1
{print "Less than three."}

(See sections below on code formatting to see exactly what these
constructions represent.)

II.e. COMPILER ERRORS

A compiler error is generally of one of two types. A fatal error
looks like this:

FATAL ERROR: <message>

and halts compiler execution.

A non-fatal error typically looks like:

<FILENAME>: <location>
(...the offending code...)
ERROR: <message>

It prints the section of code that caused the error, followed by an
explanation of the problem. Compilation will generally continue
unless the -a switch has been set.

NOTE: The section of offending code may not be printed exactly as
it appears in the source, since the compiler often paraphrases and
rebuilds the source code into a more rigid format before building
the line.

Also, the compiler may issue warnings in the form:

WARNING: <message>

Compilation will continue, but this is an indication that the
compiler suspects a problem at compile-time.

If the -g switch has been set during invocation to generate generic-
format errors, error output looks like:

filename(line): Error: <error message>

(The usefulness of this is that some editors recognize the above
type of error for line-seeking within a given file.)

II.f. COMPILER DIRECTIVES

A number of special commands may be used to determine a.) how the
source code is read by the compiler, or b.) what special output will
be generated at compile time.

HugoManual 16 / 128

To set switches within the source code so that they do not have to
be specified each time the compiler is invoked for that particular
program, the line

#switches -<sequence>

will set the switches specified by <sequence>, where <sequence> is
a string of characters representing valid switches, without any
separators between characters.

Many programmers may find it useful to make

#switches -ils

the first line in every new program, which will automatically print
out debugging information, a statistical summary, and any errors to
the .LST list file.

Using

#version <version>[.<revision>]

specifies that the file is to be used with version
<version>.<revision> of the compiler. If the file and compiler
version are mismatched, a warning will be issued.

To include the contents of another file at the specified point in
the current file, use

#include "<filename>"

where <filename> is the full path and name of the file to be read.
When <filename> has been read completely, the compiler resumes with
the statement immediately following the INCLUDE command.

(A file or set of files can be compiled into a precompiled header
using the -h switch, and then linked using #link instead of
#include. See Appendix D on Precompiled Headers.)

A useful tool for managing Hugo source code is the ability to use
compiler flags for conditional compilation. A compiler flag is
simply a user-defined marker that can control which sections of the
source code are compiled. In this way, a programmer can develop
add-ons to a program that can be included or excluded at will. For
example, the library files HUGOLIB.H and GRAMMAR.G check to see if
a flag called DEBUG has been set previously (as it is in
SAMPLE.HUG). Only if it has do they include the HUGOFIX.H and
HUGOFIX.G files.

To set and clear flags, use

#set <flagname>

and

#clear <flagname>

HugoManual 17 / 128

respectively.

Then, check to see if a flag is set or not (and include or exclude
the specified block of source code) by using

#ifset <flagname>
...conditional block of code...

#endif

or

#ifclear <flagname>
...conditional block of code...

#endif

Conditional compilation constructions may be nested up to 16 levels
deep.

(Remember also that compiler flags can be specified in the
invocation line as #<flag name>.)

Finally, the #message directive can be used as

#message "<text>"

to output <text> when (or if) that statement is processed during the
first compilation pass.

Including "error" or "warning" before "<text>" as in

#message error "<text>"

or

#message warning "<text>"

will force the compiler to issue an error or warning, respectively,
as it prints "<text>".

It is also possible to include inline limit settings, such as

$<setting>=<limit>

in the same way as in the invocation line. However, an error will
be issued if, for example, an attempt is made to reset MAXOBJECTS if
one or more objects have already been defined.

1.4 OBJECTS

III. OBJECTS

Objects are the building blocks of any Hugo program. Anything that

HugoManual 18 / 128

must be accessible to a player during the game--including items,
rooms, other characters, and even directions--must be defined as an
object.

The basic object definition looks like this:

object <objectname> "object name"
{

...
}

As an example, a suitcase object might be defined as:

object suitcase "suitcase"
{}

The enclosing braces are needed even if the object definition has no
body. The only data attached to the suitcase object are--from right
to left--a name, an identifier, and membership in the basic object
class.

The compiler assigns the object labelled <objectname> the next
sequential object number. That is, if the first-defined object is
the "nothing" object (object 0), then the next-defined object,
whatever it is, is given the object number 1; the one after that is
2, etc. This is academic, however, as a programmer need never know
what object number a particular object is--except for certain
debugging situations--and can always refer to an object by its label
<objectname>.

III.a. THE OBJECT TREE

In order for objects to have a position in the game, i.e. to be in
a room or contained in another object or beside another object, they
must occupy a position in the object tree. The object tree is a map
which represents the relationships between all objects in the game.
The total number of objects is held in the global variable objects.

The nothing object is defined in the library as object 0. This is
the root of the object tree, upon which all other objects are based.

When referring to object numbers, this manual is generally referring
to the name given the object in the source code: i.e. <objectname>.
The compiler automatically assigns each object an object number, and
refers to it whenever a specified <objectname> is encountered.

(NOTE: When using the standard library routines, ensure that no
objects (or classes, to be discussed later) are defined before
HUGOLIB.H is included. Problems will arise if the first-defined
object--object 0--is not the "nothing" object.)

Here is an example of an object tree:

Nothing

HugoManual 19 / 128

|
Room
|
Table-----Chair-----Book------Player
| |
Bowl Bookmark
|
Spoon

A number of functions can be used to read the object tree.

parent
sibling
child
youngest
elder
eldest (same as child)
younger (same as sibling)

and

children

Each function takes a single object as its argument, so that

parent(Table) = Room
parent(Bookmark) = Book
parent(Player) = Room
child(Bowl) = Spoon
child(Room) = Table
child(Chair) = 0 (Nothing)
sibling(Table) = Chair

sibling(Player) = 0 (Nothing)
youngest(Room) = Player
youngest(Spoon) = 0 (Nothing)
elder(Chair) = Table
elder(Table) = 0 (Nothing)

and

children(Room) = 4
children(Table) = 1
children(Chair) = 0

(In keeping with the above explanation of object numbers and
<objectname>, the functions in the first set actually return an
integer number that refers to a particular <objectname>.)

To better understand how the object tree represents the physical
world, the table, the chair, the book, and the player are all in the
room. The bookmark is in the book. The bowl is on the table,
and the spoon is on the bowl. The Hugo library will assume that the
player object in the example is standing; if the player were seated,
the object tree might look like:

Nothing

HugoManual 20 / 128

|
Room
|
Table-----Chair-----Book
| | |
... Player ...

and

child(Chair) = Player
parent(Player) = Chair
children(Chair) = 1

(Try compiling SAMPLE.HUG with the -o switch in order to see the
object tree for the sample game. Or, if the DEBUG flag was set
during compilation, use the HugoFix command

$ot

or

$ot <object>

during play to view the current state of the object tree during
play.)

Logical tests can also be evaluated with regard to objects and
children. The structure

<object> [not] in <parent>

will return true if <object> is in <parent> (or false if NOT is
used).

To initially place an object in the object tree, use

in <parent>

in the object definition, or, alternatively

nearby <object>

or simply

nearby

to give the object the same parent as <object> or, if <object> is
not specified, the same parent as the last-defined object.

If no such specification is given, the parent object defaults to
0--the nothing object as defined in the library. All normal room
objects have 0 as their parent.

Therefore, the expanded basic case of an object definition is

object <objectname> "object name"
{

HugoManual 21 / 128

in <parent object>
...

}

(Ensure that the opening brace "{" does not come on the same line as
the "object" specifier.

object <objectname> "object name" {...

is not permitted.)

The table in the example presumably had a definition like

object table "Table"
{

in room
...

}

To put the suitcase object defined earlier into the empty room in
SHELL.HUG

object suitcase "suitcase"
{

in emptyroom
}

Objects can later be moved around the object tree using the MOVE
command as in

move <object> to <new parent>

Which, essentially, disengages <object> from its old parent, makes
the sibling of <object> the sibling of <object>’s elder, and moves
<object> (along with all its possessions) to the new parent.

Therefore, in the original example, the command

move bowl to player

would result in altering the object tree to this:

Nothing
|
Room
|
Table-----Chair-----Book------Player

| |
Bookmark Bowl

|
Spoon

There is also a command to remove an object from its position in the
tree (although it may be returned later):

remove <object>

HugoManual 22 / 128

which is the same as

move <object> to 0

III.b. ATTRIBUTES

Attributes are essentially qualities that every object either does
or doesn’t have. They are most useful for qualifying or
disqualifying objects for or from consideration in any given
instance.

An attribute is defined as

attribute <attribute name>

Up to 128 attributes may be defined. Those defined in HUGOLIB.H
include:

known if an object is known to the player
moved if an object has been moved
visited if a room has been visited
static if an object cannot be taken
plural for plural objects (i.e. some hats)
living if an object is a character
female if a character is female
unfriendly if a character is unfriendly
openable if an object can be opened
open if it is open
lockable if an object can be locked
locked if it is locked
light if an object is or provides light
readable if an object can be read
switchable if an object can be turned on or off
switchedon if it is on
clothing for objects that can be worn
worn if the object is being worn
mobile if the object can be rolled, etc.
enterable if an object is enterable
container if an object can hold other objects
platform if other objects can be placed on it

(NOTE: container and platform are
mutually exclusive)

hidden if an object is not to be listed
quiet if container or platform is quiet (i.e. the

initial listing of contents is suppressed)
transparent if object is not opaque
already_listed if object has been pre-listed (i.e. before

a WhatsIn listing)
workflag for system use
special for miscellaneous use

Some of these attributes are actually the same attribute with
different names. This is accomplished via

HugoManual 23 / 128

attribute <attribute2> alias <attribute1>

where <attribute1> has already been defined. For example, the
library equates visited with moved (since, presumably, they will
never apply to the same object), so:

attribute visited alias moved

In this case, an object which is visited is also, by default, moved.
It is expected that attributes which are aliased will never both
need to be checked under the same circumstances.

Attributes are given to an object during its definition as follows:

object <objectname> "object name"
{

is [not] <attribute1>, [not] <attribute2>, ...
...

}

NOTE: The NOT keyword in the object definition is important when
using a class instead of the basic object definition, where the
class may have predefined attributes that are undesirable for the
current object.

Even if an object was not given a particular attribute in its object
definition, it may be given that attribute at any later point in the
program with the command

<object> is [not] <attribute>

where the NOT keyword clears the attribute instead of setting it.

Attributes can also be read using the IS and IS NOT structures. As
a function,

<object> is [not] <attribute>

returns true (1) if <object> is (or is not, if NOT is specified)
<attribute>. Otherwise, it returns false (0).

To give the suitcase object the appropriate attributes, expand the
object definition to include

object suitcase "suitcase"
{

in emptyroom
is openable, not open
...

}

Now, the following equations hold true:

suitcase is openable = 1
suitcase is open = 0
suitcase is locked = 0

HugoManual 24 / 128

III.c. PROPERTIES

Properties are considerably more complex than attributes. First,
not every object may have every property; in order for an object to
have a property, it must be specified in the object definition.

As well, properties are not simple on/off flags. They are sets of
valid data associated with an object, where the values may represent
almost anything, including object numbers, dictionary addresses,
integer values, and addresses of executable code. The maximum
number of attached values is undefined, but manageability and
efficiency suggest eight or less.

These are some valid properties (using property names defined in
HUGOLIB.H):

nouns "tree", "bush", "shrub", "plant"

size 20

found_in livingroom, entrancehall

long_desc
{"Exits lead north and west. A door is set
in the southeast wall."}

short_desc
{

"There is a box here. It is ";
if self is open

print "open";
else

print "closed";
print "."

}

before
{

object DoGet
{

if Acquire(player, self)
{"You pick up ";
print Art(self); "."}

else
return false

}
}

The nouns property contains 4 dictionary addresses; the size
property is a single integer value; the found_in property holds two
object numbers; and the long and short description properties are
both single values representing the address of the attached routine.

The before property is a special case. This complex property is

HugoManual 25 / 128

defined by the compiler and handled differently by the engine than
a normal property routine. In this case, the property value
representing the routine address is only returned if the globals
object and verbroutine contain the object in question and the
address of the DoGet routine, respectively. If there is a match,
the routine is executed before DoGet. (There is also an after
routine, which is checked after the verb routine has been called.)

(Note for clarity: the Art routine from HUGOLIB.H prints the
appropriate article, if any, followed by the name of the object.
The Acquire routine returns true only if the first objectþs holding
property plus the size property of the second object does not exceed
the capacity property of the first object.)

All of this may be a little confusing for now. There will be more
on property routines later. For now, think of a property as simply
containing a value (or set of values).

A property is defined similiarly to an attribute as

property <property name>

A default value may be defined for the property using

property <property name> <default value>

where <default value> is a constant or dictionary word. For objects
without a given property, attempting to find that property will
result in the default value. If no default is explicitly declared,
it is 0.

The list of properties defined in HUGOLIB.H is:

name the basic object name
before pre-verb routines
after post-verb routines
noun noun(s) for referring to object
adjective adjective(s) for describing object
article "a", "an", "the", "some", etc.
preposition "in", "inside", "outside of", etc.
pronoun appropriate for the object in question
short_desc basic "X is here" description
initial_desc supersedes short_desc
long_desc detailed description
found_in in case of multiple locations
type to identify the type of object
n_to
ne_to
e_to
se_to
s_to
sw_to (for rooms only, where an exit leads)
w_to
nw_to
u_to
d_to
in_to

HugoManual 26 / 128

out_to
cant_go message if a direction is invalid
size for holding/inventory
capacity " " "
holding " " "
reach for limiting object accessiblity
list_contents for overriding normal listing
door_to for handling "Enter <object>"
key_object if lockable, the proper key
when_open supersedes short_desc
when_closed " "
ignore_response for characters
order_response " "
contains_desc instead of basic "inside X are..."
inv_desc for special inventory descriptions
desc_detail parenthetical detail for object listing
parse_rank for differentiating like-named objects
exclude_from_all for interpreting "all" in inputs
misc for miscellaneous use

(For a detailed description of how each property is used, see

Appendix B: The Library
.)

Property names may again be aliased by

property <property2> alias <property1>

where <property1> has already been defined.

The library aliases (among others) the following:

nouns alias noun
adjectives alias adjective
prep alias preposition
pronouns alias pronoun

A property is expressed as

<object>.<property>

The number of elements to the property with more than a single value
can be found via

<object>.#<property>

and a single element is expressed as

<object>.<property> #<element number>

NOTE: <object>.<property> is simply the shortened version of
<object>.<property> #1.

To add some properties to the suitcase object, expand the object
definition to

HugoManual 27 / 128

object suitcase "big green suitcase"
{

in emptyroom ! done earlier
is openable, not open !

nouns "suitcase", "case", "luggage"
adjective "big", "green", "suit"
article "a"
size 25
capacity 100

}

Based on the engine rules for object identification, the suitcase
object may now be referred to by the player as "big green suitcase",
"big case", or "green suitcase" among other combinations. Even "big
green" and "suit" may be valid, provided that these don’t also refer
to other objects within valid scope such as "a big green apple" or
"your suit jacket".

(NOTE: The basic form for identification by the parser is

<adjective 1> <adj. 2> <adj. 3> <adj. 4> <noun>

where the maximum number of words is 5, and any subset of these
elements is allowable. However, the noun must come last, and only
one noun is recognized, so that

<noun> <noun> and <noun> <adjective>

as in

"luggage case" and "suitcase green"

are not recognized.)

One occasional source of befuddling code that doesn’t behave the way
the programmer intended is not allowing enough slots for a property
on a given object. That is, if an object is originally defined with
the property

found_in kitchen

and later, the program tries to set

<object>.found_in #2 = livingroom

it will have no substantial effect. That is, there will be no space
initialized in <object>’s property table for a second value under
found_in. Trying to read <object>.found_in #2 will return a value
of 0--a non-existent property--not the number of the livingroom
object.

To overcome this, if it is known that eventually a second (or third,
or fourth, or ninth) value is going to be set--even if only one
value is defined at the outset--use

found_in kitchen, 0[, 0, 0,...]

HugoManual 28 / 128

in the object definition.

(A useful shortcut for initializing multiple zero values is to use

found_in #4

instead of

found_in 0, 0, 0, 0

in the object definition.)

As might be expected, combinations of properties are read left-to-
right, so that

location.n_to.name

is understood as

(location.n_to).name

III.d. CLASSES

Classes are essentially objects that are specifically intended to be
used as prototypes for one or more similar objects. Here is how a
class is defined:

class <classname> ["<optional name>"]
{

...
}

with the body of the definition being the same as that for an object
definition, where the properties and attributes defined are to be
the same for all members of the class.

For example:

class box
{

noun "box"
long_desc

"It looks like a regular old box."
is openable, not open

}

box largebox "large box"
{

article "a"
adjectives "big", "large"
is open

}

HugoManual 29 / 128

box greenbox "green box"
{

article "a"
adjective "green"
long_desc

"It looks like a regular old box, except green."
}

(Beginning the long_desc property routine on the line below the
property name is understood by the compiler as:

long_desc
{

"It looks..."
}

Since the property is only one line--a single printing command--the
braces are unnecessary.)

The definition of an object in a class is begun with the name of the
prototype object instead of "object". All properties and attributes
of the class are inherited (except for its position in the object
tree), unless they have been explicitly defined in the new object.

That is, although the box class is defined without the open
attribute, the largebox object will begin the game as open, since
this is in the largebox defition. It will begin the game as
openable, as well, as this is inherited from the box class.

And while the largebox object will have the long_desc of the box
class, the greenbox object replaces the default property routine
with a new description. (An exception to this is an $ADDITIVE
property, to be discussed later, where new properties are added to
those of previous classes.)

Since a class is basically an object, it is possible to define an
object using a previous object as a class even though the previous
object was not explicitly defined as a class. Therefore,

largebox largeredbox "large red box"
{

adjectives "big", "large", "red"
}

is perfectly valid.

Occasionally, it may be necessary to have an object or class inherit
from more than one previously defined class. This can be done using
the "inherits" instruction.

<class1> <objectname> "name"
{

inherits <class2>[, <class3>,...]
...

}

or even

HugoManual 30 / 128

object <objectname> "name"
{

inherits <class1>, <class2>[, <class3>,...]
...

}

The precedence of inheritance is in the order of occurrence. In
either example, the object inherits first from <class1>, then from
<class2>, and so on.

The Hugo Object Library (OBJLIB.H) contains a number of useful class
definitions for things like rooms, characters, scenery, vehicles,
etc. Sometimes, however, it may be desirable to use a different
definition for, say, the room class while keeping all the others in
the Object Library.

Instead of actually editing the OBJLIB.H file, use:

replace <class> ["<optional name>"]
{

(...completely new object definition...)
}

where <class> is the name of a previously defined object or class,
such as "room". All subsequent references to <class> will use this
object instead of the previously defined one. (Note that this means
that the replacement must come BEFORE any uses of the class for
other objects.)

1.5 HUGO PROGRAMMING

IV. HUGO PROGRAMMING

IV.a. VARIABLES

Hugo supports two kinds of variables: global and local. Either
type simply holds a 16-bit integer, so a variable can hold a simple
value, an object number, a dictionary address, a routine address, or
any other standard Hugo data type through an assignment such as:

a = 1
nextobj = parent(obj)
temp_word = "the"

Global variables are visible throughout the program. They must be
defined similarly to properties and attributes as

global <global variable name>[= <starting value>]

Local variables, on the other hand, are recognized only within the

HugoManual 31 / 128

routine in which they are defined. They are defined using

local <local variable name>[= <starting value>]

Global variables must of course have a unique name, different from
that of any other data object; local variables, on the other hand,
may share the names of local variables in other routines.

In either case, global or local, the default starting value is 0 if
no other value is given. For example,

global time_of_day = 1100

is equal to 1100 when the program is run, and is visible at any
point in the program, by any object or routine. On the other hand,
the variables

local a, max = 100, t

are visible only within the block of code where they are defined,
and are initialized to 0, 100, and 0, respectively, each time that
section of code (be it a routine, property routine, event, etc.) is
run.

The compiler defines a set of engine globals: global variables that
are referenced directly by the engine, but which may otherwise be
treated like any other global variables. These are:

object direct object of a verb action
xobject indirect object
self self-referential object
words total number of words in command
player the player object
actor the player, or character obj. (for scripts)
verbroutine specified by the command
endflag if not false (0), run EndGame routine
prompt for input; default is ">"
objects the total number of objects
linelength the maximum number of characters in a line
pagelength the maximum number of lines in the window

The object and xobject routines are set up by the engine depending
on what command is entered by the player. The self global is
undefined except when an object is being referenced (as in a
property routine). In that case, it is set to the number of that
object. The player variable holds the number of the object that the
player is controlling; the verbroutine variable holds the address of
the routine specified in the grammar table and corresponding to the
entered command; the endflag variable must be 0 unless something has
occurred to end the game; and the prompt variable represents the
dictionary word appearing at the start of an input line.

The objects, linelength, and pagelength variables can be set by the
player, but to no useful effect. The engine will reset them to the
"real" value whenever they are referenced.

(NOTE: Setting endflag to a non-zero value forces an IMMEDIATE

HugoManual 32 / 128

break from the game loop. Statements following the endflag
assignment even in the same function are not executed; control is
passed directly to the engine, which calls the EndGame routine.)

IV.b. CONSTANTS

Constants are simply labels that represent a non-modifiable value.

constant FIRST_NAME "John"
constant LAST_NAME "Smith"

print LAST_NAME; ", "; FIRST_NAME

outputs:

Smith, John

Constants can, like any other Hugo data type, be integers,
dictionary entries, object numbers, etc.

(It is not absolutely necessary that a constant be given a definite
value if the constant is to be used as some sort of flag or marker,
etc. Therefore,

constant THIS_RESULT
constant THAT_RESULT

will have unique values from each other, as well as from any other
constant defined without a definite value.)

Sometimes it may be useful to enumerate a series of constants in
sequence. Instead of defining them all individually, it is possible
to use:

enumerate start = 1
{

MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY
}

giving:

MONDAY = 1, TUESDAY = 2, WEDNESDAY = 3, THURSDAY = 4,
FRIDAY = 5

The start value is optional. If omitted, it is 0. Also, it is
possible to change the current value at any point (therefore also
affecting all following values).

enumerate
{

A, B, C = 5, D, E
}

gives: A = 0, B = 1, C = 5, D = 6, E = 7.

HugoManual 33 / 128

Finally, it is possible to alter the step value of the enumeration
using the "step" keyword followed by "+x", "-x", "*x", or "/x",
where x is a constant integer value. To count by twos:

enumerate step *2
{

A = 1, B, C, D
}

gives: A = 1, B = 2, C = 4, D = 8.

NOTE: Enumeration of global variables is also possible, using the
"global" specifier, as in:

enumerate globals
{

<global1>, <global2>,...
}

Otherwise the specifier "constants" is implied as the default.

IV.c. PRINTING TEXT

Text can be printed using two different methods. The first is the
basic PRINT command, the simplest form of which is

print "<string>"

where <string> consists of a series of alphanumeric characters and
punctuation.

The backslash control character ("\") is handled specially. It
modifies how the character following it in a string is treated.

\" inserts quotation marks
\ insert a literal backslash character
_ insert a forced space, overriding left-justification for

the rest of the string
\n insert a newline

As usual, a single "\" at the end of a line signals that the line
continues with the following line.

Examples:

print "\"Hello!\""

"Hello!"

print "Print a...\n...newline"

Print a...
...newline

HugoManual 34 / 128

print "One\two\three"

One\two\three

print " Left-justified"
print "_ Not left-justified"

Left-justified
Not left-justified

print "This is a \
single line."

This is a single line.

(Although

print "This is a
single line."

will produce the same result, since the line break occurs within
quotation marks.)

NOTE: These control-character combinations are valid for printing
only; they are not treated as literals, as in, for example,
expressions involving dictionary entries.

After each of the above print commands, a newline is printed. To
avoid this, append a semicolon (";") to the end of the print
statement.

print "This is a ";
print "single line."

This is a single line.

Print statements may also contain data types, or a combination of
data types and strings. The command

print "The "; object.name; " is closed."

will print the word located at the dictionary address specified by
object.name, so that if object.name points to the word "box", the
resulting output would be:

The box is closed.

To capitalize the first letter of the specified word, use the
CAPITAL modifier.

print "The "; capital object.name; " is closed."

The Box is closed.

To print the data type as a value instead of referencing the
dictionary, use the NUMBER modifier. For example, if the variable

HugoManual 35 / 128

time_left holds the value 5,

print "There are "; number time_left; " seconds remaining."

There are 5 seconds remaining.

If NUMBER were not used, the engine would try to find a word at the
dictionary address 5, and the result will likely be garbage.

NOTE: Mainly for debugging purposes, the modifier HEX prints the
data type as a hexadecimal number instead of a decimal one. If the
variable val equals 127,

print number val; " is "; hex val; " in hexadecimal."

127 is 7F in hexadecimal.

The second way to print text is from the text bank, from which
sections are loaded from disk only when they are needed by the
program. This method is provided so that lengthy blocks of
text--such as description and narration--do not take up valuable
space in memory. The command consists simply of a quoted string
without any preceding statement.

"This string would be written to disk."

This string would be written to disk.

or

"So would this one ";
"and this one."

So would this one and this one.

Notice that a semicolon at the end of the statement still overrides
the newline. The in-string control-character combinations are still
usable with these print statements, but since each command is a
single line, data types and other modifiers may not be compounded.
Because of that,

"\"Hello,\" he said."

will write

"Hello," he said.

to the .HEX file text bank, but

"There are "; number time_left; " seconds remaining."

is illegal.

The color of text may be changed using the COLOR command. The
format is

color <foreground>[, <background>[, <input color>]]

HugoManual 36 / 128

where the background color is not necessary. If no background color
is specified, the current one is assumed).

The input color is also not necessary--this refers to the color of
player input.

The standard color set with corresponding values and constant labels
is:

COLOR CONSTANT VALUE LABEL

Black 0 BLACK
Blue 1 BLUE
Green 2 GREEN
Cyan 3 CYAN
Red 4 RED
Magenta 5 MAGENTA
Brown 6 BROWN
White 7 WHITE
Dark gray 8 DARK_GRAY
Light blue 9 LIGHT_BLUE
Light green 10 LIGHT_GREEN
Light cyan 11 LIGHT_CYAN
Light red 12 LIGHT_RED
Light magenta 13 LIGHT_MAGENTA
Yellow 14 YELLOW
Bright white 15 BRIGHT_WHITE

Default foreground 16 DEF_FOREGROUND
Default background 17 DEF_BACKGROUND

(The labels are defined in HUGOLIB.H; when using the library, it is
never necessary to refer to a color by its numerical value.)

It is expected that, regardless of the system, any color will print
visibly on any other color. However, it is suggested for
practicality that white (and less frequently bright while) be used
for most text-printing.

Magenta printing on a cyan background is accomplished by

color MAGENTA, CYAN

or

color 5, 3 ! if not using HUGOLIB.H

A current line can be filled--with blank spaces in the current
color--to a specified column (essentially a tab stop) using the
PRINT TO structure as follows:

print "Time:"; to 40; "Date:"

where the value following TO does not exceed the maximum line length
in the engine global linelength.

HugoManual 37 / 128

The resulting output will be something like:

Time: Date:

Text can be specifically located using the LOCATE command via

locate <column>, <row>

where

locate 1, 1

places text output at the top left corner of the screen. Once
again, <column> must not exceed the linelength global. The <row>
must not exceed the pagelength.

IV.d. MORE CONTROL CHARACTERS

As listed above, the following are valid control characters that may
be embedded in printed strings:

\" quotation marks
\ a literal backslash character
_ a forced space, overriding left-justification for the rest

of the string
\n a newline

The next set of control characters control the appearance of printed
text by turning on and off boldface, italic, proportional, and
underlined printing. Not all computers and operating systems are
able to provide all types of printed output; however, the engine can
be relied upon to properly process any formatting--i.e.
proportionally printed text will still look fine even on a system
that has only a fixed-width font, such as MS-DOS (although, of
course, it won’t be proportionally spaced).

\B boldface on
\b boldface off
\I italics on
\i italics off
\P proportional printing on
\p proportional printing off
\U underlining on
\u underlining off

(Print style can also be changed using the Font routine in
HUGOLIB.H. Font-change constants can be combined as in:

Font(BOLD_ON | ITALICS_ON | PROP_OFF)

where the valid constants are BOLD_ON, BOLD_OFF, ITALICS_ON,
ITALICS_OFF, UNDERLINE_ON, UNDERLINE_OFF, PROP_ON, and PROP_OFF.)

Special characters can also be printed via control characters. Note

HugoManual 38 / 128

that these characters are contained in the extended ASCII character
set; if a particular system is incapable of displaying it, it will
display the normal-ASCII equivalent. (The following examples,
appearing in parentheses, may not display properly on all computers
and printers.)

\‘ accent grave followed by a, e, i, o, or u
e.g. "\‘a" will print an ’a’ with an
accent grave (à)

\’ accent acute followed by a, e, i, o, u, or E
e.g. "\’E" will print an ’E’ with an
accent acute (é)

\~... tilde where ’...’ is an n or N
e.g. "\~n" will print an ’n’ with a
tilde (ñ)

\^... circumflex where ’...’ is a, e, i, o, or u
e.g. "\^i" will print an ’i’ with a
circumflex (î)

\: umlaut followed by a, e, i, o, u, y, O, U
e.g. "\:u" will print a ’u’ with an
umlaut (ü)

\, cedilla followed by c or C
e.g. "\,c" will print a ’c’ with a
cedilla (ç)

\< or \> Spanish quotation marks (« »)
\! upside-down exclamation point (¡)
\? upside-down question mark (¿)
\ae ae ligature (æ)
\AE AE ligature (Æ)
\c cents symbol (¢)
\L British pound (£)
\Y Japanese Yen (\yen)
\- em dash (-)

\#xxx any ASCII character where xxx represents the three-
digit ASCII number of the character to be printed
e.g. "\#065" will print an ’A’ (ASCII 65)

NOTE: Because non- or extended-ASCII character values may not be
the same on every system, it is recommended to always use
control-character combinations to print these characters instead of
typing them directly from the keyboard (on systems where this is
possible).

EXAMPLE: MIXING TEXT STYLES

! Sample routine to print various typefaces and colors:

HugoManual 39 / 128

#include "hugolib.h"

routine PrintingSample
{

print "Text may be printed in \Bboldface\b,
\Iitalics\i, \Uunderlined\u, or \Pproportional\p
typefaces."

color RED ! or color 4
print "\nGet ready. ";
color YELLOW ! color 14
print "Get set. ";
color GREEN ! color 2
print "Go!"

}

The output will be:

Text may be printed in boldface, italics, underlined, or
proportional typefaces.

Get ready. Get set. Go!

with "boldface", "italics", "underlined", and "proportional" printed
in their respective typefaces. "Get ready", "Get set", and "Go!"
will all appear on the same line in three different colors.

Note that not all computers will be able to print all typefaces.
The basic MS-DOS port, for example, uses color changes instead of
actual typeface changes, and does not support proportional printing.

IV.e. OPERATORS AND ASSIGNMENTS

Hugo allows use of all standard math operators:

+ addition
- subtraction

* multiplication
/ integer division

Comparisions are also valid as operators, returning Boolean true or
false (1 or 0) so that

2 + (x = 1)
5 - (x > 1)

evaluate respectively to 3 and 5 if x is 1, and 2 and 4 if x is 2 or
greater.

Valid relational operators are

= equal to
~= not equal to
< less than

HugoManual 40 / 128

> greater than
<= less than or equal to
>= greater than or equal to

Logical operators (AND, OR, and NOT) are also allowed.

(x and y) or (a and b)
(j + 5) and not ObjectisLight(k)

AND returns true if both values are non-zero. OR returns true if
either is non-zero. NOT returns true only if the following value is
zero.

1 and 1 = 1
1 and 0 = 0
5 and 3 = 1
0 and 9 = 0
0 and 169 and 1 = 0
1 and 12 and 1233 = 1

1 or 1 = 1
35 or 0 = 1
0 or 0 = 0

not 0 = 1
not 1 = 0
not 8 = 0

1 and 7 or (14 and not 0) = 1
(0 or not 1) and 3 = 0

Additionally, bitwise operators are provided:

1 & 1 = 1 (Bitwise and)
1 | 0 = 1 (Bitwise or)
~0 = -1 (Bitwise not/inverse)

(A detailed explanation of bitwise operations is a little beyond the
scope of this manual; programmers may occasionally use the "|"
operator to combine bitmask-type parameters for certain library
functions, but only advanced users should have to worry about
employing bitwise operators to any great extent in practical
programming.)

Any Hugo data type can appear in an expression, including routines,
attribute tests, properties, constants, and variables. Standard
mathematical rules for order of significance in evaluating an
expression apply, so that parenthetical sub-expressions are
evaluated first, followed by multiplication and division, followed
by addition and subtraction.

Some sample combinations are:

10 + object.size ! numerical constant and property
object is openable + 1 ! attribute test and constant
FindLight(location) + a ! routine return val. and variable
1 and object is light ! const., logical test, and attrib.

HugoManual 41 / 128

Expressions can be evaluated and assigned to either a variable or a
property.

<variable> = <expression>

<object>.<property> [#<element>] = <expression>

In certain cases, the compiler may allow a statement where the left-
hand side of the assignment is non-modifiable. I.e.

Function() = <expression>

or

<object>.#<property> = <expression>

may be compiled, but such statements will force a run-time error
from the Hugo Engine.

IV.f. EFFICIENT OPERATORS

Something like

number_of_items = number_of_items + 1
if number_of_items > 10
{

print "Too many items!"
}

can be coded more simply as

if ++number_of_items > 10
{

print "Too many items!"
}

The "++" operator increases the following variable by one before
returning the value of the variable. Similarly, "--" can precede a
variable to decrease the value by one before returning it. Since
these operators act before the value is returned, they are called
"pre-increment" and "pre-decrement".

If "++" or "--" comes AFTER a variable, the value of the variable is
returned and then the value is increased or decreased, respectively.
In these usages, the operators are called "post-increment" and
"post-decrement".

For example,

while ++i < 5 ! pre-increment
{

print number i; " ";
}

HugoManual 42 / 128

will output:

1 2 3 4

But

while i++ < 5 ! post-increment
{

print number i; " ";
}

will output:

1 2 3 4 5

Since in the second example, the variable is increased before
getting the value, while in the second example, it is increased
after checking it.

It is also possible to use the operators "+=", "-=", "*=", and "/=".
These can also be used to modify a variable at the same time its
value is being checked. All of these, however, operate before the
value in question is returned.

x = 5
y = 10
print "x = "; number x*=y; ", y = "; number y

Result:

x = 50, y = 10

When the compiler is processing any of the above lines, the
efficient operator takes precedence over a normal (i.e., single-
character) operator.

For example,

x = y + ++z

is actually compiled as

x = y++ + z

since the "++" is compiled first. To properly code this line with
a pre-increment on the z variable instead of a post-increment on y:

x = y + (++z)

IV.g. ARRAYS AND STRINGS

Prior to this point, little has been said about arrays. Arrays are
sets of values that share a common name, and where the elements are

HugoManual 43 / 128

referenced by number. Arrays are defined by

array <arrayname> [<array size>]

where <array size> must be a numerical constant.

An array definition reserves a block of memory of <array size> 16-
bit words, so that, for example,

array test_array[10]

initializes 10 16-bit words (or 20 8-bit bytes) for the array.

Keep in mind that <array size> determines the size of the array, NOT
the maximum element number. Elements begin counting at 0, so that
test_array, with 10 elements, has members numbered from 0 to 9.
Trying to access test_array[10] or higher would return a meaningless
value. (Trying to assign it by mistake would likely overwrite
something important, like the next-defined array.)

To prevent such out-of-bounds array reading/writing, an array’s
length may be read via:

array[]

where no element number is specified. Using the above example,

print test_array[]

would result in "10".

Array elements can be assigned more than one at a time, as in

<arrayname> = <element1>, <element2>, ...

where <element1> and <element2> can be expressions or single values.

Elements need not be all of the same type, either, so that

test_array[0] = (10 + 5) * x, "Hello!", FindLight(location)

is perfectly legal (although perhaps not perfectly useful). More
common is a usage like

names[0] = "Ned", "Sue", "Bob", "Maria"

or

test_array[2] = 5, 4, 3, 2, 1

The array can then be accessed by

print names[0]; " and "; names[3]

Ned and Maria

or

HugoManual 44 / 128

b = test_array[3] + test_array[5]

which would set the variable b to 4 + 2, or 6.

Because array space is statically allocated by the compiler, all
arrays must be declared at the global level. Local arrays are
illegal, as are entire arrays passed as arguments. However, single
elements of arrays are valid arguments.

Significantly, it is possible to pass an array address as an
argument, and the routine can then access the elements of the array
using the ARRAY modifier. For example, if items is an array
containing:

items[0] = "apples"
items[1] = "oranges"
items[2] = "socks"

The following:

routine Test(v)
{

print array v[2]
}

can be called using

Test(items)

to produce the output "socks", even though v is an argument (i.e.
local variable), and not an array. The line "print array v[2]"
tells the engine to treat v as an array address, not as a discrete
value.

Array strings are also possible, and Hugo provides a way to store a
dictionary entry in an array as a series of ASCII characters using
the STRING command:

string(<array address>, <dictionary entry>, <max. length>)

(The <max. length> provision is required because the engine has no
way of checking for array boundaries.)

For example,

string(a, word[1], 10)

will store up to 10 characters from word[1] into a.

NOTE: It is expected in the preceding example that a would have at
least 11 elements, since STRING expects to store a terminating 0 or
null character after the string itself.

For example,

x = string(a, word[1], 10)

HugoManual 45 / 128

will store up to 10 characters of word[1] in the array a, and return
the length of the stored string to the variable x.

(The token PARSE$ may be used in place of the dictionary entry
address; see the section below on

Junction Routines: ParseError
for a description.)

The library defines the functions StringCopy, StringEqual,
StringLength, and StringPrint, which are extremely useful when
dealing with string arrays.

StringCopy copies one string array to another array.

StringCopy(<new array>, <old array>[, <length>])

For example,

StringCopy(a, b)

copies the contents of b to a, while

StringCopy(a, b, 5)

copies only 5 characters of b to a.

x = StringEqual(<string1>, <string2>)
x = StringCompare(<string1>, <string2>)

StringEqual returns true only if the two specified string arrays are
identical. StringCompare returns 1 if <string1> is lexically
greater than <string2>, -1 if <string1> is lexically less than
<string2>, and 0 if the two strings are identical.

StringLength returns the length of a string array, as in:

len = StringLength(a)

and StringPrint prints a string array (or part of it).

StringPrint(<array address>[, <start>, <end>)

For example, if a contains "presto",

StringPrint(a)

will print "presto", but

StringPrint(a, 1, 4)

will print "res". (The <start> parameter in the first example
defaults to 0, not 1--the first numbered element in an array is 0.)

An interesting side-effect of being able to pass array addresses as
arguments is that it is possible to "cheat" the address, so that,
for example,

HugoManual 46 / 128

StringCopy(a, b+2)

will copy b to a, beginning with the third letter of b (since the
first letter of b is b[0]).

It should also be kept in mind that string arrays and dictionary
entries are two entirely separate animals, and that comparing them
directly is using StringCompare is not possible. That is, while a
dictionary entry is a simple value representing an address, a string
array is a series of values each representing a character in the
string.

The library provides the following to overcome this:

StringDictCompare(<array>, <dict. entry>)

which returns the same values (1, -1, 0) as StringCompare, depending
on whether the string array is lexically greater than, less than, or
equal to the dictionary entry.

(There is a complement to the STRING command, the DICT function,
that dynamically creates a new dictionary entry at runtime. Its
syntax is:

x = dict(<array>, <maxlen>)
x = dict(parse$, <maxlen>)

where the contents of <array> or parse$ are written into the
dictionary, to a maximum of <maxlen> characters, and the address of
the new word is returned.

However, since this requires extending the actual length of the game
file, it is necessary to provide for this during compilation.
Inserting

$MAXDICTEXTEND=<number>

at the start of the source file will write a buffer of <number>
empty bytes at the end of the dictionary. (MAXDICTEXTEND is, by
default, 0.)

Dynamic dictionary extension is used primarily in situations where
the player may be able to, for example, name an object, then refer
to that object by the new name. In this case, the new words will
have to exist in the dictionary, and must be written using DICT.

However, a guideline for programmers is that there should be a limit
to how many new words the player can cause to be created, so that
the total length of the new entries never exceeds <number>, keeping
in mind that the length of an entry is the number of characters plus
one (the byte representing the actual length). That is, the word
"test" requires 5 bytes.)

EXAMPLE: MANAGING STRINGS

HugoManual 47 / 128

#include "hugolib.h"

array s1[32]
array s2[10]
array s3[10]

routine StringTests
{

local a, len

a = "This is a sample string."
len = string(s1, a, 31)
string(s2, "Apple", 9)
string(s3, "Tomato", 9)

print "a = \""; a; "\""
print "(Dictionary address: "; number a; ")"
print "s1 contains \""; StringPrint(s1); "\""
print "(Array address: "; number s1;
print ", length = "; number len; ")"
print "s2 is \""; StringPrint(s2);
print "\", s3 is \""; StringPrint(s3); "\""

"\nStringCompare(s1, s2) = ";
print number StringCompare(s1, s2)
"StringCompare(s1, s3) = ";
print number StringCompare(s1, s3)

}

The output will be:

a = "This is a sample string."
(Dictionary address = 887)
s1 contains "This is a sample string."
(Array address = 1625, length = 24)
s2 is "Apple", s3 is "Tomato"

StringCompare(s1, s2) = 1
StringCompare(s1, s3) = -1

As is evident above, a dictionary entry does not need to be a single
word; any piece of text which must be treated as a value gets
entered into the dictionary table.

The argument 31 in the first call to the STRING function allows up
to 31 characters from a to be copied to s1, but since the length of
a is only 24 characters, only 25 values (including the terminating
0) get copied, and the string length of s1 is returned in len.

Since "A(pple)" is lexically less than "T(his...)", comparing the
two returns -1. As "To(mato)" is lexically greater than
"Th(is...)", StringCompare returns 1.

HugoManual 48 / 128

IV.h. CONDITIONAL EXPRESSIONS AND PROGRAM FLOW

Program flow can be controlled using a variety of constructions,
each of which is built around an expression that evaluates to false
(zero) or non-false (non-zero).

The most basic of these is the IF statement.

if <expression>
{...conditional code block...}

NOTE: The enclosing braces are not necessary if the code block is
a single line. Note also that the conditional block may begin (and
even end) on the same line as the IF statement provided that braces
are used.

if <expression>
...single line...

if <expression> {...conditional code block...}

If braces are not used for a single line, the compiler automatically
inserts them, although special care must be taken when constructing
a block of code nesting several single-line conditionals.

While

if <expression1>
if <expression2>

...conditional code block...

may be properly interpreted,

if <expression1>
for (...<expression2>...)

if <expression3>
...conditional code block...

will not be. The compiler will misunderstand the end of the FOR
loop construction because the enclosing conditional code block
expects to end with the FOR expression. In turn the FOR expression
does not properly differentiate the end of the conditional loop.
The result would likely be a stack overflow error in the engine
because the engine will continually nest the execution of recursive
FOR loops until it runs out of stack space.

The proper way to structure that same section of code would be:

if <expression1>
{

for (...<expression2>...)
{

if <expression3>
...conditional code block...

}
}

HugoManual 49 / 128

NOTE: The best advice is to rely on braces to clarify code
structure whenever using such complex constructions. This applies
particularly to mixing IF, FOR, WHILE, and DO-WHILE expressions,
especially when recursive function calls are involved. While the
results may appear as intended, the method to produce them is
incorrect, and any long-running such construction is almost
guaranteed to crash the stack.

More elaborate uses of IF involve the use of ELSEIF and ELSE.

if <expression1>
...first conditional code block...

elseif <expression2>
...second conditional code block...

elseif <expression3>
...third conditional code block...

...
else

...default code block...

In this case, the engine evaluates each expression until it finds
one that is true, and then executes it. Control then passes to the
next non-if/elseif/else statement following the conditional
construction. If no true expression is found, the default code
block is executed. If, for example, <expression1> evaluates to a
non-false value, then none of the following expressions are tested.

Of course, all three (IF, ELSEIF, and ELSE) need not be used every
time, and simple IF-ELSEIF and IF-ELSE combinations are perfectly
valid.

In certain cases, the IF statement may not lend itself perfectly to
clarity, and the SELECT-CASE construction may be more appropriate.
The general form is:

select <variable>
case <value1>[, <value2>, ...]

...first conditional code block...
case <value3>[, <value4>, ...]

...second conditional code block...
...
case else

..default code block...

In this case, the engine quickly performs an evaluation that is
essentially

if <variable> = <value1> [or <variable> = <value2> ...]

There is no limit on the number of values (separated by commas) that
can appear on a line following CASE. The same rules for bracing
multiple-line code blocks apply as with IF (as well as for every
other type of conditional block).

NOTE: Cases do not "fall through" to the following case. Think of
cases following the first as being ELSEIF statements rather than IF

HugoManual 50 / 128

statements; once a true case has been found, subsequent cases are
ignored. (This is, in fact, the way the compiler codes them, and
indeed how they will appear using runtime tracing.)

Basic loops may be coded using WHILE and DO-WHILE.

while <expression>
...conditional code block...

do
...conditional code block...

while <expression>

Each of these executes the conditional code block as long as
<expression> holds true. It is assumed that the code block somehow
alters expression so that at some point it will become false;
otherwise the loop will execute endlessly.

while x <= 10
x = x + 1

do
{x = x + 1
print "x is "; number x}

while x <= 10

The only difference between the two is that if <expression> is false
at the outset, the WHILE code block will never run. The DO-WHILE
code block will run at least once even if <expression> is false at
the outset.

The most complex loop construction uses the FOR statement.

for (<assignment>; <expression>; <modifier>)
...conditional code block...

For example:

for (i=1; i<=15; i=i+1)
print "i is "; number i

First, the engine executes the assignment setting i = 1. Then, it
executes the print statement. Next, it checks to see if the
expression holds true (if i is less than or equal to 15). If it
does, it executes the print statement and the modifying assignment
that increments i. It continues the loop until the expression tests
false.

Not all elements of the FOR construction are necessary. For
example, the assignment may be omitted, as in

for (; i<=15; i=i+1)

and the engine will simply use the existing value of i.

With

HugoManual 51 / 128

for (i=1;;i=i+1)

The loop will execute endlessly, unless some other means of exit is
provided.

The modifying expression does not have to be an expression. It may
be a routine that modifies a global variable, for example, which is
then tested by the FOR loop.

(A second form of the FOR loop is:

for <var> in <object>
...conditional code block...

which loops through all the children of <object> (if any), setting
the variable <var> to the object number of each child in sequence,
so that

for i in suitcase
print i.name

will print the names of each object in the suitcase object.)

The easiest way to picture the first form of a Hugo FOR loop is that

for (<assignment>; <expression>; <modifier>)
...conditional code block...

translates to the equivalent of

<assignment>
[while] <expression>
{

...conditional code block...
<modifier>

}

which in turn translates the equivalent of

<assignment>
:<label1>
[if] <expression>
{

...conditional code block...
<modifier>
jump <label1>

}

(On the other hand, that isn’t a particularly easy way to picture
anything, and, in its awkwardness, perhaps justifies the existence
of non-threatening WHILE, DO-WHILE, and FOR loops).

The benefit in knowing how a Hugo loop breaks down into a slip knot
of IFs and JUMPs is that it is easier to monitor program flow using
the Hugo Debugger (see

Appendix E
).

HugoManual 52 / 128

As is now obvious by the above (possibly confusing) illustration,
Hugo supports JUMP commands and labels. A label is simply a user-
specified token preceded by a colon (":") at the beginning of a
line. The label name must be a unique token in the program.

Use caution with JUMP, particularly when looping back to the same
conditional statment over and over again. Each time an IF, SELECT-
CASE, WHILE, DO-WHILE, or FOR statement executes, Hugo pushes data
onto the stack; recklessly doing this over and over again will
topple the stack and crash the engine.

In general, it may be best to try if at all possible to avoid using
JUMP whenever possible.

It is also important to recognize--particularly with SELECT and
WHILE or DO-WHILE statements--that the expression is tested each
time the loop executes, or, in the case of a SELECT statement, for
each corresponding case. The significance of this is seen in the
following example

select test.prop_routine
case 1

{...}
case 2

{...}
case 3

{...}

where prop_routine returns a value from 1 to 3. The property
routine will be executed 3 separate times, once for each CASE
statement. If prop_routine has some other effect, such as modifying
a global variable or printing output, then this will also occur 3
times.

If such an effect would be undesirable, try

local test_val ! set up a local variable
test_val = test.prop_routine ! and assign it
select test_val

case 1
{...}

...

so that test.prop_routine is called only once.

A similar case would be where

select random(3)
case 1: {...}
case 2: {...}
case 3: {...}

would result in something akin to:

if random(3) = 1: {...}
elseif random(3) = 2: {...}

HugoManual 53 / 128

elseif random(3) = 3: {...}

In other words, a different random value would be evaluated each
time. A better choice would be:

local b
b = random(3)
select b

case 1: {...}
...

One final keyword is important in program flow, and that is BREAK.
At any point during a loop, it may be necessary to exit immediately
(and probably prematurely). BREAK passes control to the statement
immediately following the current loop.

In the example

do
{

while <expression2>
{

...
if <expression3>

break
...

}
...

}
while <expression1>

the BREAK causes the immediately running WHILE <expression2> loop to
terminate, even if <expression2> is true. However, the external DO-
WHILE <expression3> loop continues to run.

It has been previously stated that lines ending in "and" or "or" are
continued onto the next line in the case of long conditional
expressions. A second useful provision is the ability to use a
comma to separate options within a conditional expression. As a
result,

if word[1] = "one", "two", "three"
while object is open, not locked
if a ~= 1, 2, 3

are translated into

if word[1] = "one" or word[1] = "two" or word[1] = "three"
while object is open and object is not locked
if suitcase not in livingroom, garage
if a ~= 1 and a ~= 1 and a ~= 3

respectively.

Note that with an "=" or "in" comparison, a comma results in an "or"
comparison. With "~=" or an attribute comparison, the result is an
"and" comparison.

HugoManual 54 / 128

1.6 ROUTINES AND EVENTS

V. ROUTINES AND EVENTS

V.a. ROUTINES

Routines are blocks of code that may be called at any point in a
program. A routine may or may not return a value, and it may or may
not require a list of parameters (or arguments). (A number of
routines have occurred in previous examples, but here is the formal
explication.)

A routine is defined as

routine <routinename> [(<argument1>, <argument2>, ...)]
{

...
}

once again ensuring the the opening brace ("{") comes on a new line
following the "routine" specifier.

(NOTE: To substitute a new routine for an existing one with the
same name (such as in a library file), define the new one using
REPLACE instead of ROUTINE.

replace <routinename> [(<argument1>, <argument2>, ...)]

For example,

routine TestRoutine(obj)
{

print "The "; obj.name; " has a size of ";
print obj.size; "."
return obj.size

}

takes a single value as an argument, assigns it to a local variable
obj, executes a simple printing sequence, and returns the property
value: obj.size. The RETURN keyword exits the current routine, and
returns a value if specified.

Both

return

and

return <expression>

HugoManual 55 / 128

are valid. If no expression is given, the routine returns 0. If no
RETURN statement at all is encountered, the routine continues until
the closing brace ("}"), then returns 0.

TestRoutine can be called several ways:

TestRoutine(suitcase)

will (assuming the suitcase object as been defined as previously
illustrated) print

"The big green suitcase has a size of 25."

The return value will be ignored. On the other hand,

x = TestRoutine(suitcase)

will print the same output, but will assign the return value of
TestRoutine to the variable x.

Now, unlike C and similar languages, Hugo does not require that
routines follow a strict prototype. Therefore, both

TestRoutine

and

TestRoutine(suitcase, 5)

are valid calls for the above routine.

In the first case, the argument obj defaults to 0, since no value is
passed. The parentheses are not necessary if no arguments are
passed. In the second case, the value 5 is passed to TestRoutine,
but ignored.

Arguments are always passed by value, not by reference or address.
A local variable in one routine can never be altered by another
routine. What this means is that, for example, in the following
routines:

routine TestRoutine
{

local a

a = 5
Double(a)
print number a

}

routine Double(a)
{

a = a * 2
}

Calling TestRoutine would print "5" and not "10" because the local

HugoManual 56 / 128

variable a in Double is only a copy of the variable passed to it as
an argument.

These two routines would, on the other hand, print "10":

routine TestRoutine
{

local a

a = 5
a = Double(a)
print number a

}

routine Double(a)
{

return a * 2
}

The local a in TestRoutine is reassigned with the return value from
Double.

An interesting side-effect of a null (0) return value can be seen
using the PRINT command. Consider the The routine in HUGOLIB.H,
which prints an object’s definite article (i.e. "the", if
appropriate), followed by the object’s name property.

print "You open "; The(object); "."

might result in

You open the suitcase.

Note that the above PRINT command itself really only prints

"You open "

and

"."

It is the The routine that prints

the suitcase

Since The returns 0 (the null string, or ""), the PRINT command is
actually displaying

"You open ", "", and "."

where the null string ("") is preceded on the output line by The’s
printing of "the " and the object name.

--
V.b. PROPERTY ROUTINES
--

HugoManual 57 / 128

Property routines are slightly more complex than those described so
far, but follow the same basic rules. Normally, a property routine
runs when the program attempts to get the value of a property that
contains a routine.

That is, instead of

size 10

an object may contain the property

size
{

return x + 5
}

Trying to read object.size in either case will return an integer
value.

Here’s another example. Normally, if <object> is the current room,
then <object>.n_to would contain the object number of the room to
the north. The library checks <object>.n_to to see if a value
exists for it; if none does, the move is invalid.

Consider this:

n_to office

and

n_to
{"The office door is locked."}

or

n_to
{

"The office door is locked. ";
return false

}

In the first case, an attempt on the part of the player to move
north would result in parent(player) being changed to the office
object. In the second case, a custom invalid-move message would be
displayed. In the third case, the custom invalid-move message would
be displayed, but then the library would continue as if it had not
found a n_to property for <object>, and it would print the standard
invalid-move message (without a newline, thanks to the semicolon):

"The office door is locked. You can’t go that way."

NOTE: While normal routines return false (or 0) by default,
property routines return true (or 1) by default.

(For those wondering why the true return value in the second case
doesn’t prompt a move to object number 1, the library DoGo routine

HugoManual 58 / 128

assumes that there will never be a room object numbered one.)

Property routines may be run directly using the RUN command:

run <object>.<property>

If <object> does not have <property>, or if <object>.<property> is
not a routine, nothing happens. Otherwise, the property routine
executes. Property routines do not take arguments.

Remember that at any point in a program, an existing property may be
changed using

<object>.<property> = <value>

A property routine may be changed using

<object>.<property> =
{

...
}

where the new routine must be enclosed in braces.

It is entirely possible to change what was once a property routine
into a simple value, or vice-versa, providing that space for the
routine (and the required number of elements) was allowed for in the
original object definition. Even if a property routine is to be
assigned later in the program, the property itself must still be
defined at the outset. A simple

<property> 0

or

<property> {return false}

will suffice.

There is, however, one drawback to this re-assignment of property
values to routines and vice-versa. A property routine is given a
"length" of one 16-bit word, which is the property address. When
assigning a value or set of values to a property routine, the engine
behaves as if the property was originally defined for this object
with only one word of data, since it has no way of knowing the
original length of the property data.

For example, if the original property specification in the object
definition was:

found_in bedroom, livingroom, garage

and at some point the following was executed:

found_in = {return basement}

then the following would not subsequently work:

HugoManual 59 / 128

found_in #3 = attic

because the engine now believes <object>.found_in to have only one
16-bit word of data attached to it.

Finally, keep in mind that whenever calling a property routine, the
global variable self is normally set to the object number. To avoid
this, such as when "borrowing" a property from another object from
within a different object, reference the property via

<object>..<property>

using ".." instead of the normal property operator.

EXAMPLE: "BORROWING" PROPERTY ROUTINES

Consider a situation where a class provides a particular property
routine. Normally, that routine is inherited by all objects defined
using that class. But there may arise a situation where one of
those objects must have a variation or expansion on the original
routine.

class food
{

bites_left 5
eating
{

self.bites_left = self.bites_left - 1
if self.bites_left = 0

remove self ! all gone
}

}

food health_food
{

eating
{

actor.health = actor.health + 1
run food..eating

}
}

(Assuming that bites_left, eating, and health are defined as
properties, with eating being called whenever a food object is
eaten.)

In this case, it would be inconvenient to have to retype the entire
food.eating routine for the health_food object just because the
latter must also increase actor.health. Using ".." calls
food.eating with self set to health_food, not the food class, so
that food.eating affects health_food.

HugoManual 60 / 128

V.c. BEFORE AND AFTER ROUTINES

The Hugo Compiler predefines two special properties: before and
after. They are unique in that not only are they always routines,
but they are much more complex (and versatile) than a standard
property routine.

Complex properties like before and after are defined with

property <property name> $complex <default value>

as in:

property before $complex
property after $complex

Here is the syntax for the before property:

before
{

<usage1> <verbroutine1>[, <verbroutine2>,...]
{

...
}
<usage2> <verbroutine3>[, <verbroutine4>,...]
{

...
}
...

}

(The after property is the same, substituting "after" for "before".)

The <usage> specifier is a value against which the specified object
is matched. Most commonly, it is "object", "xobject", "location",
"actor", "parent(object)", etc. The <verbroutine> is the name of a
verb routine to which the usage in question applies.

If <object>.before is checked, with the global verbroutine set to
one of the specified verbroutines in the before property, and
<usage> in that instance is "object", then the following block of
code is executed. If no match is found, <object>.before returns
false.

Here is a clearer example using the suitcase object we have been
developing:

before
{

object DoEat
{

"You can’t eat the suitcase!"
}

}

HugoManual 61 / 128

after
{

object DoGet
{

"With a vigorous effort, you pick up the suitcase."
}
xobject DoPutIn
{

"You put ";
The(object)
" into the suitcase."

}
}

Each of these examples will return true, thereby overriding the
engine’s default operation (see the section on

The Game Loop
). In

order to fool the engine into continuing normally, as if no before
or after property has been found, return false from the property routine.

after
{

object DoGet
{"Fine. ";
return false}

}

will result in:

>get suitcase
Fine. Taken.

Since the after routine returns false, and the library’s default
response for a successful call to DoGet is "Taken."

It is important to remember that, unlike other property routines,
before and after routines are additive; i.e. a before (or after)
routine defined in an inherited class or object is not overwritten
by a new property routine in the new object. Instead, the
definition for the routine is--in essence--added onto. An additive
property is defined using the $ADDITIVE qualifier, as in:

property <property name> $additive <default value>

All previously inherited before/after subroutines are carried over.
However, the processing of a before/after property begins with the
present object, progressing backward through the object’s ancestry
until a usage/verb-routine match is found; once a match is made, no
further preceding class inheritances are processed (unless the
property routine in question returns false).

NOTE: To force a before or after property routine to apply to ANY
verbroutine, do not specify a verbroutine. (This has changed from
Hugo v2.1 and earlier, where it was necessary to specify the Parse
routine in place of a verbroutine.)

HugoManual 62 / 128

For example,

before
{

xobject
{

...
}

}

The specified routine will be run whenever the object in question is
the xobject of ANY valid input.

If this non-specific block occurs before any block(s) specifying
verbroutines, then the following blocks, if matched, will run as
well so long as the block does not return true. If the non-specific
block comes after any other blocks, then it will run only if no
other object/verbroutine combination is matched.

A drawback of this non-specification is that all verbroutines are
matched--both verbs and xverbs. This can be particularly
undesirable in the case of location before/after properties, where
a non-specific response will be triggered even for "save",
"restore", etc.

To get around this, the library provides a function AnyVerb, which
takes an object as its argument and returns that object number if
the current verbroutine is not within the group of xverbs; otherwise
it returns false. Therefore, it can be used via:

before
{

AnyVerb(location)
{

...
}

}

instead of

before
{

location
{

...
}

}

The former will execute the conditional block of code whenever the
location global matches the current object and the current
verbroutine is not an xverb. The latter (without using AnyVerb),
will run for verbs and xverbs. (The reason for this, simply put, is
that the location global always equals the location global(!). But
AnyVerb(location) will only equal the location global if the
verbroutine is not an xverb.)

HugoManual 63 / 128

EXAMPLE: BUILDING A COMPLEX OBJECT

At this point, enough material has been covered to develop a
comprehensive example of a functional object that will serve as a
summary of concepts introduced so far, as well as providing
instances of a number of common properties from HUGOLIB.H.

object woodcabinet "wooden cabinet"
{

in emptyroom
article "a"
nouns "cabinet", "shelf", "shelves", "furniture", \

"doors", "door"
adjectives "wooden", "wood", "fine", "mahogany"

short_desc
"A wooden cabinet sits along one wall."

when_open
"An open wooden cabinet sits along one wall."

long_desc
{

"The cabinet is made of fine mahogany wood,
hand-crafted by a master cabinetmaker. In front
are two doors (presently ";
if self is open

print "open";
else: print "closed";
print ")."

}
contains_desc

"Behind the open doors of the cabinet you
can see"; ! note the semicolon--no line feed

key_object cabinetkey ! a cabinetkey object must
! also be created

holding 0 ! starts off empty
capacity 100

before
{

object DoLookUnder
{"Nothing there but dust."}

object DoGet
{"The cabinet is far too heavy to lift!"}

}
after
{

object DoLock
{"With a twist of the key, you lock the

cabinet up tight."}
}

is container, openable, not open, lockable, static
}

HugoManual 64 / 128

And for a challenge: how could the cabinet be converted into, say,
a secret passage into another room?

ANSWER:

Add a door_to property, such as:

door_to secondroom ! a new room object

The cabinet can now be entered via: "go cabinet", "get into
cabinet", "enter cabinet", etc.

V.d. INIT AND MAIN

At least two routines are typically part of every Hugo problem:
INIT and MAIN. (The latter is required. The compiler will issue an
error if no Main routine exists.)

INIT, if it exists, is called once at the start of the program (as
well as during a RESTART command). The routine should configure all
variables, objects, and arrays needed to begin the game.

MAIN is called every turn. It should take care of general game
management such as moving ahead the counter, as well as running
events and scripts.

V.e. EVENTS

Events are useful for bringing a game to life, so that little
quirks, behaviors, and occurrences can be provided for with little
difficulty.

Events are also routines, but their special characteristic is that
they may be attached to a particular object, and they are run as a
group by the RUNEVENTS command.

Events are defined as

event
{

...
}

for global events, and

event [in] <object>
{

...
}

HugoManual 65 / 128

for events attached to a particular object. (The "in" is optional,
but may be useful for legibility.) If an event is attached to an
object, it is run only when that object has the same grandparent as
the player object (where grandparent refers to the last object
before 0, the nothing object).

NOTE: If the event is not a global event, the self global is set to
the number of the object to which the event is attached.

EXAMPLE: BUILDING A CLOCK EVENT

Suppose that there is a clock object in a room. Here is a possible
routine:

event clock
{

local minutes, hours

hours = counter / 60
minutes = counter - (hours * 60)

if minutes = 0
{

print "The clock chimes ";
select hour

case 1: print "one";
case 2: print "two";
case 3: print "three";
.
.
.
case 12: print "twelve";

print " o’clock."
}

}

Whenever the player and the clock are in the same room (when a
RUNEVENTS command is given), the event will run.

Now, suppose the clock should be audible throughout the entire
house--i.e. at any point in the game map. Simply changing the event
definition to

event ! no object is given
{

...
}

will make the event a global one.

HugoManual 66 / 128

1.7 FUSES, DAEMONS, AND SCRIPTS

VI. FUSES, DAEMONS, AND SCRIPTS

While all of the above mentioned elements of Hugo are programmed
into the internal code of the engine, the means of running fuses,
daemons, and scripts are written entirely in Hugo itself and
contained in the library (HUGOLIB.H).

VI.a. FUSES AND DAEMONS

A daemon is the traditional name for a recurring activity. Hugo
handles daemons as special events attached to objects that may be
activated or deactivated (i.e. moved in and out of the scope of
RUNEVENTS).

Since the daemon class is defined in the library, define a daemon
itself using

daemon <name>
{}

The body of the daemon definition is empty. It is only needed to
attach the daemon event to, so the daemon definition must be
followed by

event <name>
{

...
}

Activate it by

Activate(<name>)

which moves the specified daemon object into scope of the player.
This way, whenever a RUNEVENTS command is given (as it should be in
the Main routine), the event attached to <name> will run.

Deactivate the daemon using

Deactivate(<name>)

which removes the daemon object from scope.

It can be seen here that a daemon is actually a special type of
object which is moved in and out of the scope of RUNEVENTS, and that
it is the event attached to the daemon that actually contains the
code.

A fuse is the traditional name for a timer--i.e. any event set to

HugoManual 67 / 128

happen after a certain period of time. The fuse itself is a
slightly more complex version of a daemon object, containing two
additional properties as well as in_scope:

timer - the number of turns before the fuse event runs
tick - a routine that decrements timer and returns the

number of turns remaining (i.e. the value of timer)

Similarly to a daemon, define a fuse in two steps

fuse <name>
{}

event <name>
{

...
if not self.tick
{

...
}

}

and turn it on or off by

Activate(<name>, <setting>)

or

Deactivate(<name>)

where <setting> is the initial value of the timer property.

Note that it is up to the event itself to run the timer and check
for its expiration. The line

if not self.tick

runs the tick property--which decrements the timer--and executes the
following conditional block if self.timer is 0.

EXAMPLE: A SIMPLE DAEMON AND SIMPLER FUSE

The most basic daemon would be something like a sleep counter, which
measures how far a player can go beginning from a certain rested
state.

Assume that the player’s amount of rest is kept in a property called
rest, which decreases by 2 each turn.

daemon gettired
{}

event gettired
{

HugoManual 68 / 128

player.rest = player.rest - 2
if player.rest < 0

player.rest = 0

select player.rest
case 20

"You’re getting quite tired."
case 10

"You’re getting \Ivery\i tired."
case 0

"You fall asleep!"
}

Start and stop the daemon with Activate(gettired) and
Deactivate(gettired).

Now, as for a fuse, why not construct the most obvious example:
that of a ticking bomb? (Assume that there exists another physical
bomb object; tickingbomb is only the countdown fuse.)

fuse tickingbomb
{}

event tickingbomb
{

if not self.tick
{

if Contains(location, bomb)
"You vanish in a nifty KABOOM!"

else
"You hear a distant KABOOM!"

remove bomb
}

}

Start it (with a countdown of 25 turns) and stop it with
Activate(tickingbomb, 25) and Deactivate(tickingbomb).

VI.b. SCRIPTS

Scripts are considerably more complex than fuses and daemons. The
purpose of a script (also called a character script) is to allow an
object--usually a character--to follow a sequence of actions turn-
by-turn, independent of the player.

Up to 16 scripts may be running at once. It is up the the
programmer not to overflow this limit.

A script is represented by two arrays: SCRIPTDATA and SETSCRIPT.
The latter was named for programming clarity than for what it
actually contains. Here’s why:

To define a script, use the following notation:

HugoManual 69 / 128

setscript[Script(<object>, <number>)] = &CharRoutine, obj,
&CharRoutine, obj,
...

(remembering that a hanging comma at the end of a line of code is a
signal to the compiler that the line continues onto the next
unbroken.)

Notice that SETSCRIPT is actually an array, taking its starting
element from the return value of the SCRIPT routine, which has
<object> and <number> as its arguments.

SCRIPT returns a pointer within the large SETSCRIPT array where the
<number> steps of a script for <object> may reside. A single script
may have up to 32 steps. A step in a script consists of a routine
and an object--both are required, even if the routine does not
require an object. (Use the nothing object (0); see the CharWait
routine in HUGOLIB.H for reference.)

The custom in HUGOLIB.H is that character script routines use the
prefix "Char" although this is not required. Currently, routines
provided include:

CharMove (requiring a direction object)
CharWait (using the nothing object)
CharGet (requiring a takeable object)
CharDrop (requiring an object held by the character)

as well as the special routine

LoopScript (using the nothing object)

which indicates that a script will continually execute. (It is the
responsibility of the programmer to ensure that the ending position
of the character or object is suitable to loop back to the beginning
if LoopScript is used. That is, if the script consists of a complex
series of directions, the character should always return to the same
starting point.)

The sequence of routines and objects for each script is stored in
the SETSCRIPT array.

Scripts are run using the RunScripts routine, similar to RUNEVENTS,
the only difference being that RUNEVENTS is an engine command while
RunScripts is contained entirely in HUGOLIB.H.

The line

RunScripts

will run all active object/character scripts, one turn at a time,
freeing the space used by each once it has run its course.

Here is a sample script for a character named "Ned":

setscript[Script(ned, 4)] = &CharMove, s_obj,
&CharGet, cannonball,

HugoManual 70 / 128

&CharMove, n_obj,
&CharDrop, cannonball

Ned will go south, retrieve the cannonball object, and bring it
north again. (The character script routines provided in the library
are relatively basic; for example, CharGet assumes that the
specified object will be there when the character comes to get
it.)

Other script-management routines in HUGOLIB.H include:

CancelScript(obj) to immediately halt execution of the
script for <obj>

PauseScript(obj) to temporarily pause execution of the
script for <obj>

ResumeScript(obj) to resume execution of a paused script

SkipScript(obj) skips the script for <obj> during the next
call to RunScripts only

The RunScripts routine also checks for before and after properties.
It continues with the default action--i.e. the character action
routine specified in the script--if it finds a false value.

To override a default character action routine, include a before
property for the character object using the following form:

before
{

actor CharRoutine
{

...
}

}

where CharRoutine is CharWait, CharMove, CharGet, CharDrop, etc.

VI.c. A NOTE ABOUT THE event_flag GLOBAL:

The library routines--particularly the DoWait... verb
routines--expect the event_flag global variable to be set to a non-
false value if something happens (i.e. in an event or script) so
that the player may be notified and given the opportunity to quit
waiting. For instance, the character script routines in HUGOLIB.H
set event_flag whenever a character does something in the same
location as the player.

If HUGOLIB.H is to be used, the convention of setting event_flag
after every significant event should be adhered to.

HugoManual 71 / 128

1.8 GRAMMAR AND PARSING

VII. GRAMMAR AND PARSING

VII.a. GRAMMAR DEFINITION

Every valid player command must specified. More precisely, each
usage of a particular verb must be detailed in full by the source
code.

Grammar definitions must ALWAYS come at the start of a program,
preceding any objects or executable code. That is, if several
additional grammar files are to be included, or new grammar is to be
explicitly defined in the source code, it must be done before any
files containing executable code are included, or any routines,
objects, etc. are defined.

The syntax used is:

[x]verb "<verb1>" [, "<verb2>", "<verb3>",...]

* <syntax specification 1> <VerbRoutine1>

* <syntax specification 2> <VerbRoutine2>
...

Now, what does that mean? Here are some examples from the library
grammar file GRAMMAR.G:

verb "get"

* DoVague

* "up"/"out"/"off" DoExit

* "outof"/"offof"/"off" object DoExit

* "in"/"on" object DoEnter

* multinotheld "from"/"off" parent DoGet

* multinotheld "offof"/"outof" parent DoGet

* multinotheld DoGet

verb "take"

* DoVague

* "off" multiheld DoTakeOff

* multiheld "off" DoTakeOff

* multinotheld DoGet

* multinotheld "from"/"off" parent DoGet

* multinotheld "offof"/"outof" parent DoGet

xverb "save"

* DoSave

* "game" DoSave

HugoManual 72 / 128

verb "read", "peruse"

* DoVague

* readable DoRead

verb "unlock"

* DoVague

* lockable DoUnLock

* lockable "with" held DoUnLock

Each VERB or XVERB header begins a new verb definition. An XVERB is
a special signifier that indicates that the engine should not call
the MAIN routine after successful completion of the action. XVERB
is typically used with non-action, housekeeping-type verbs such as
saving, restoring, quitting, and restarting.

Next in the header comes one or more verb words. Each of the
specified words will share the following verb grammar EXACTLY. This
is why "get" and "take" in the above examples are defined
separately, instead of as

verb "get", "take"

In this way, the commands

get up

and

take off hat

are allowable, while

take up

and

get off hat

won’t make any sense.

Each line beginning with an asterisk ("*") is a separate valid usage
of the verb being defined. (Every player input line must begin with
a verb. Exceptions, where a command is directed to an object as in

Ned, get the ball

will be dealt with later.)

Up to two objects and any number of dictionary words may make up a
syntax line. The objects must be separated by at least one
dictionary word.

Valid object specifications are:

object any visible object (the direct object)
xobject the indirect object

HugoManual 73 / 128

<attribute> any visible object that is <attribute>
parent an xobject that is the parent of the object
held any object possessed by the player object
notheld an object explicitly not held
anything any object, held or not, visible or not
multi multiple visible objects
multiheld multiple held objects
multinotheld multiple notheld objects
number a positive integer number
word any dictionary word
string a quoted string
(RoutineName) a routine name, in parentheses
(objectname) a single object name, in parentheses

(If a number is specified in the grammar syntax, it will be passed
to the verbroutine in the object global. If a string is specified,
it will be passed in the engine’s parse$ variable, which can then be
turned into a string array using the STRING function.)

Dictionary words that may be used interchangeably are separated by
a slash ("/").

Two or more dictionary words in sequence must be specified
separately. That is, in the input line:

take hat out of suitcase

the syntax line

* object "out" "of" container

will be matched, while

* object "out of" container

would never be recognized, since the engine will automatically parse
"out" and "of" as two separate words; the parser will never find a
match for "out of".

Regarding object specification within the syntax line: Once the
direct object has been found, the remaining object in the input line
will be stored as the xobject. That is, in the example immediately
above, a valid object in the input line with the attribute container
will be treated as the indirect object by the verb routine.

NOTE: An important point to remember when mixing dictionary words
and objects within a syntax line is that, unless directed
differently, the parser may confuse a word-object combination with
an invalid object name. Consider the following:

verb "pick"

* object DoGet

* "up" object DoGet

This definition will result in something like

>pick up box

HugoManual 74 / 128

You haven’t seen any "up box", nor are you likely to in the
near future even if such a thing exists.

(assuming that "up" has been defined elsewhere as part of a
different object name, as in OBJLIB.H), because the processor
processes the syntax

* object

and determines that an invalid object name is being used; it never
gets to

* "up" object

The proper verb definition would be ordered like

verb "pick"

* "up" object DoGet

* object DoGet

so that both "pick <object>" and "pick up <object>" are valid player
commands.

To define a new grammar condition that will take precedence over an
existing one--such as in GRAMMAR.G--simply define the new condition
first (i.e. before including GRAMMAR.G).

A single object may be specified as the only valid object for a
particular syntax:

verb "rub"

* (magic_lamp) DoRubMagicLamp

will produce a "You can’t do that with..." error for any object
other than the magic_lamp object.

Using a routine name to specify an object is slightly tricky: the
engine calls the given routine with the object specified in the
input line as its argument; if the routine returns true, the object
is valid--if not, a parsing error is expected to have been printed
by the routine.

VII.b. THE PARSER

Immediately after an input line is received, the engine calls the
parser, and the first step taken is to identify any invalid words,
i.e. words that are not in the dictionary table.

NOTE: One non-dictionary word or phrase is allowed in an input
line, providing it is enclosed in quotation marks (""). If the
command is successfully parsed and matched, this string is passed to
parse$. More than one non-dictionary word or phrase (even if the
additional phrases are enclosed in quotes) are not allowed.

HugoManual 75 / 128

The next step is to break the line down into individual words.
Words are separated by spaces and basic punctuation (including "!"
and "?") which are removed. All characters in an input line are
converted to lower case.

The next step is to process the three types of special words which
may be defined in the source code.

REMOVALS are the simplest. These are simply words that are to be
automatically removed from any input line, and are basically limited
to words such as "a" and "the" which would, generally speaking, only
make grammar matching more complicated and difficult.

The syntax for defining a removal is:

removal "<word1>"[, "<word2>", "word<3>",...]

as in

removal "a", "an", "the"

SYNONYMS are slightly more complex. These are words that will never
be found in the parsed input line; they are replaced by the
specified word for which they are a synonym.

synonym "<synonym>" for "<word>"

as in

synonym "myself" for "me"

The above example will replace every occurrence of "myself" in the
input line with "me". Usage of synonyms will likely not be
extensive, since of course it is possible to, particularly in the
case of object nouns and adjectives specify synonymous words which
are still treated as distinct.

COMPOUNDS are the final type of special word, specified as:

compound "<word1>", "<word2>"

as in

compound "out", "of"

so that the input line

get hat out of suitcase

would be parsed to

get hat outof suitcase

Depending on the design of grammar tables for certain syntaxes, the
use of compounds may make grammar definition more straightforward,
so that by using the above compound,

HugoManual 76 / 128

verb "get"

* multinotheld "outof"/"offof"/"from" parent

is possible, and likely more desirable to

verb "get"

* multinotheld "out"/"off" "of" parent

* multinotheld "from" parent

When the parser has finished processing the input line, the result
is a specially defined (by the Hugo Engine) array called word, where
the number of valid elements is held in the global variable words.

Therefore, in

get the hat from the table

the parser--using the removals defined in HUGOLIB.H--will produce
the following results:

word[1] = "get"
word[2] = "hat"
word[3] = "from"
word[4] = "table"

words = 4

NOTE: Multiple-command input lines are also allowed, provided that
the individual commands are separated by a period (".").

get hat. go n. go e.

would become

word[1] = "get"
word[2] = "hat"
word[3] = ""
word[4] = "go"
word[5] = "n"
word[6] = ""
word[7] = "go"
word[8] = "e"
word[9] = ""

words = 9

(See the Parse routine in HUGOLIB.H for an example of how

get hat then go n

is translated into:

word[1] = "get"
word[2] = "hat"
word[3] = ""
word[4] = "go"
word[5] = "n")

HugoManual 77 / 128

A maximum of thirty-two words is allowed. The period is in each
case converted to the null dictionary entry ("", address = 0), which
is a signal to the engine that processing of the current command
should end here.

NOTE: The parsing and grammar routines also recognize several
system words, each in the format "~word". These are:

~and referring to: multiple specific objects
~all " " multiple objects in general
~any " " any one of a list of objects
~except " " an excluded object
~oops to correct an error in the previous input line

To allow an input line to access any of these system words, a
synonym must be defined, such as

synonym "and" for "~and"

The library defines several such synonyms.

1.9 JUNCTION ROUTINES

VIII. JUNCTION ROUTINES

Because, simply put, the engine is unaware of such things as
attributes, properties, and objects in anything but a technical
sense, there are provided a number of routines to facilitate
communication between the engine and the program proper.

Along with these, there are certain global variables and properties
that are pre-defined by the compiler and accessed by the engine.
These are:

GLOBALS: object the direct object of a verb
xobject the indirect object
self self-referential object
words total number of words
player the player object
location location of the player
verbroutine the verb routine address
endflag if not false (0), call EndGame
prompt for input line

PROPERTIES: name basic object name
before pre-verb routines
after post-verb routines
noun noun(s) for referring to object
adjective adjective(s) for referring to object
article "a", "an", "the", "some", etc.

(As well as the aliases nouns and adjectives

HugoManual 78 / 128

for noun and adjective, respectively)

Junction routines are not required. The engine has built-in default
routines, although these will likely not be satisfactory for most
programmers. Therefore, HUGOLIB.H contains each of the following
routines which fully implement all the features of the library. If
a different routine is desired in place of a provided one, the
routine should be substituted with REPLACE.

VIII.a. PARSE

The Parse routine, if one exists, is called by the engine parser.
Here, the program itself may modify the input line before grammar
matching is attempted. What happens is:

1. The input line is split into words (by the engine).
2. The Parse routine, if it exists, is called.
3. Control returns to the engine for grammar matching.

For example, the Parse routine in HUGOLIB.H takes care of such
things as pronouns ("he", "she", "it", "them") and repeating the
last legal command (with "again" or simply "g").

Returning true from the Parse routine calls the engine parser again;
returning false continues normally. This is useful in case the
Parse routine has changed the input line substantially, requiring a
reconfiguration of the already split words.

NOTE: Since the library’s Parse routine is rather extensive, a
provision is made for a PreParse routine--which in the library is
defined as being empty--which may more easily be REPLACED for
additional parsing.

VIII.b. PARSEERROR

The ParseError routine is called whenever a command is invalid.
ParseError is called in the form

ParseError(<errornumber>, <object>)

where <object> is the object number (if any) of the object involved
in the error.

NOTE: The engine also sets up a special variable called PARSE$,
usable only in a print statement (or in conjunction with STRING),
which represents the illegal component of an input line, whether it
is the verb itself, an object name, a partial object name, or any
other word combination. For example:

print "The illegal word was: "; parse$; "."

HugoManual 79 / 128

The default responses provided by the engine parse error routine
are:

ERROR NUMBER RESPONSE

0 "What?"

1 "You can’t use the word <parse$>."

2 "Better start with a verb."

3 "You can’t <parse$> multiple objects."

4 "Can’t do that."

5 "You haven’t seen any <parse$>, nor are you
likely to in the near future even if such a
thing exists."

6 "That doesn’t make any sense."

7 "You can’t use multiple objects like that."

8 "Which <parse$> do you mean,...?"

9 "Nothing to <parse$>."

10 "You haven’t seen anything like that."

11 "You don’t see that."

12 "You can’t do that with the <parse$>."

13 "You’ll have to be a little more specific."

14 "You don’t see that there."

15 "You don’t have that."

16 "You’ll have to make a mistake first."

17 "You can only correct one word at a time."

The ParseError routine in HUGOLIB.H provides several customized
responses that take into account such things as, for example,
whether or not an object is a character or not, and if so, if it is
male or female, etc.

If the ParseError routine does not provide a response for a
particular <errornumber>, it should return false. Returning false
is a signal that the engine should continue with the default
message.

NOTE: If custom error messages are desired for user parsing
routines, REPLACE the routine CustomError with a new routine (called
with the same parameters as ParseError), providing that
<errornumber> is greater than or equal to 100.

HugoManual 80 / 128

VIII.c. ENDGAME

The EndGame routine is called immediately whenever the global
variable endflag is non-zero, regardless of whether or not the
current function has not yet been terminated.

HUGOLIB.H’s EndGame routine behaves according to the value to which
endflag is set:

endflag RESULT

1 Player wins

2 Player’s demise

(3 Other ending--not provided for by default
PrintEndGame routine)

Returning false from Endgame terminates the game completely;
returning non-false restarts.

NOTE: To modify only the message displayed at the end of the game
(defaults: "*** YOU’VE WON THE GAME! ***" and "*** YOU ARE DEAD

***"), REPLACE the PrintEndGame routine.

VIII.d. FINDOBJECT

The FindObject routine takes into account all the relevant
properties, attributes, and object hierarchy to determine whether or
not a particular object is available. For example, the child of a
parent object may be available if the parent is a platform, but
unavailable if the parent is a container (and closed)--although
internally, the object hierarchy is the same.

FindObject is called via:

FindObject(<object>, <location>)

where <object> is the object in question, and <location> is the
object where its availability is being tested. (Usually <location>
is a room, unless a different parent has been specified in the input
line.)

FindObject returns true (1) if the object is available, false (0) if
unavailable. It returns 2 if the object is visible but not
physically accessible.

The FindObject routine in HUGOLIB.H considers not only the location
of <object> in the object tree, but also tests the attributes of the
parent to see if it is open or closed. As well, it checks the

HugoManual 81 / 128

found_in property, in case <object> has been assigned multiple
locations instead of an explicit parent, and then scans the in_scope
property of the object (if one exists).

Finally, the default behavior of FindObject requires that a player
have encountered an object for it to be valid in an action, i.e. it
must have the known attribute set. To override this, REPLACE the
routine ObjectisKnown with a routine that returns an unconditional
true value.

There is one special case in which the engine expects the FindObject
routine to be especially helpful: that is if the routine is called
with <location> equal to 0. This occurs whenever the engine needs
to determine if an object is available AT ALL--regardless of any
rules normally governing object availability--such as when an
"anything" grammar token is encountered, or the engine needs to
disambiguate two or more seemingly identical objects.

VIII.e. SPEAKTO

The SpeakTo routine is called whenever an input line begins with a
valid object name instead of a verb. This is so the player may
direct commands to (usually) characters in the game. For example:

Professor Plum, drop the lead pipe

It is up to the SpeakTo routine to properly interpret the
instruction.

SpeakTo is called via:

SpeakTo(<character>)

where <character> in the above example would be the Professor Plum
object.

The globals object, xobject, and verbroutine are all set up as
normal. For the above example, then, these would be

object leadpipe
xobject nothing
verbroutine &DoDrop

when SpeakTo is called.

HUGOLIB.H’s SpeakTo routine provides basic interpretation of
questions, so that

Professor Plum, what about the lead pipe?

may be directed to the proper verb routine, as if the player had
typed:

ask Professor Plum about the lead pipe

HugoManual 82 / 128

Imperative commands are, such as

Colonel Mustard, stand up

are first directed to the order_response property of the character
object in question. It is subsequently up to
<character>.order_response to analyze verbroutine (as well as object
and xobject, if applicable) to see if the request is a valid one.
If no response is provided, order_response should return false.

order_response
{

if verbroutine = &DoGet
"I would, but my back is too sore."

else
return false

}

1.10 THE GAME LOOP

XI. THE GAME LOOP

This the paradigm that the Hugo Engine follows during program
execution:

(INIT: The Init routine is called only when the program is first
run, or when a RESTART command is issued.)

MAIN: At the start of the game loop, the engine calls the Main
routine. The routine should--as in the provided sample
programs--take care of advancing the turn counter,
executing the RUNEVENTS command, and calling such library
routines as RunScripts and PrintStatusLine.

INPUT: Keyboard input is received.

PARSING: The input line is checked for validity, synonyms and other
special words are checked, and the user Parse routine (if
any) is called.

GRAMMAR MATCHING:
The engine attempts to match the input line with a valid
verb and syntax in the grammar table. If no match is
found, the engine loops back to INPUT.

Otherwise, a successful grammar match results in at least
the verbroutine global being set, as well as potentially
object and xobject.

BEFORE ROUTINES:
If any objects were specified in the input line,
their before properties are checked in the following

HugoManual 83 / 128

order, for each object:

player.before
location.before
xobject.before (if applicable)
object.before (if applicable)

If any of these property routines returns true, the
engine skips the verb routine.

VERB ROUTINE:
If no before property routine returns true, the
verb routine is run.

If an action is successfully completed, the
verb routine should return true. Returning
false negates any remaining commands in the
input line.

The engine does not run any after property
routines for object or xobject; that is up to
the verb routine. It does run both
player.after and location.after if the
verbroutine returns true.

When finished, the engine loops back to MAIN:, calling the Main
routine only if the last verb matched was not an XVERB.

Setting the global endflag at any point to a non-zero value will
terminate the game loop and run the EndGame junction routine.

NOTE: Undo information recalled by UNDO is saved each turn only
during the Main routine (including any commands or functions called
within, such as events, fuses and daemons, or character scripts) and
verb routines (unless the verb was an xverb). It is therefore
recommended that no other routines change any signficant game data,
because it will not be recoverable with UNDO.

1.11 ADVANCED FEATURES

X. ADVANCED FEATURES

X.a. READING AND WRITING FILES

There may be times when it will be useful to store data in a file
for later recovery. The most basic way of doing this involves

x = save

and

HugoManual 84 / 128

x = restore

where the SAVE and RESTORE functions return a true value to x if
successful, or a false value if for some reason they fail. In
either case, the entire set of game data--including object
locations, variable values, arrays, attributes, etc.--is saved or
restored, respectively.

Other times, it may be desirable to save only certain values. For
example, a particular game may allow a player to create certain
player characteristics that can be restored in the same game or in
different games. (This tends toward the idea behind many
role-playing games.)

To accomplish this, use the WRITEFILE and READFILE operations.

The structure

writefile <filename>
{

...
}

will, at the start of the writefile block, open <filename> for
writing and position the filename to the start of the (empty) file.
(If the file exists, it will be cleared.) At the conclusion of the
block, the file will be closed again.

Within a writefile block, write individual values using

writeval <value1>[, <value2>, ...]

where one or more values can be specified.

To read the file, use the structure

readfile <filename>
{

...
}

which will contain the assignment

x = readval

for each value to be read, where x can be any storage type such as
a variable, property, etc.

For example,

local count, test

count = 10
writefile "testfile"
{

writeval count, "telephone", 10
test = FILE_CHECK

HugoManual 85 / 128

writeval test
}
if test ~= FILE_CHECK ! an error has occurred
{

print "An error has occurred."
}

will write the variable count, the dictionary entry "telephone", and
the value 10 to "testfile". Then,

local a, b, c, test

readfile "testfile"
{

a = readval
b = readval
c = readval
test = readval

}
if test ~= FILE_CHECK ! an error has occurred
{

print "Error reading file."
}

If the readfile block executes successfully, a will be equal to the
former value count, b will be "telephone", and c will be 10.

The constant FILE_CHECK, defined in HUGOLIB.H, is useful because
writefile and readfile provide no explicit error return to indicate
failure. FILE_CHECK is a unique two-byte sequence that can be used
to test for success.

In the writefile block, if the block is exited prematurely due to an
error, test will never be set to FILE_CHECK. The IF statement
following the block tests for this.

In the readfile block, test will only be set to FILE_CHECK if the
sequence of readval functions finds the expected number of values in
"testfile". If there are too many or too few values in "testfile",
or if an error forces an early exit from the readfile block, test
will equal a value other than FILE_CHECK.

1.12 APPENDIX A: SUMMARY OF KEYWORDS AND COMMANDS

APPENDIX A: SUMMARY OF KEYWORDS AND COMMANDS

AND

DESCRIPTION: Logical and.

SYNTAX: x = <value1> and <value2>

RESULT: x will be true if <value1> and <value2> are

HugoManual 86 / 128

both non-zero, false if one or both is zero.

ANYTHING

DESCRIPTION: Object specifier in grammar syntax line,
indicating that any nameable object in the
object tree is valid.

ARRAY

DESCRIPTION: When used as a data type modifier,
specifies that the following value is to
be treated as an array address.

EXAMPLE: <var1> = array <var2>[5]

The variable <var2> will be treated as an array
address.

BREAK

DESCRIPTION: Terminates the immediate enclosing loop.

EXAMPLE: while <expression1>
{

while <expression2>
{

if <expression3>
break

...
}
...

}

The break statement, if encountered, will
terminate the innermost loop.

CALL

DESCRIPTION: Calls a routine indirectly, i.e. when the
routine address has been stored in a
variable, object property, etc.

SYNTAX: call <value>[(<argument1>, <argument2>,...)]

where <value> is a valid data type holding the
routine address.

RETURN VALUE: When used as a function, returns the value
returned by the specified routine.

CAPITAL

HugoManual 87 / 128

DESCRIPTION: Print statement modifier, indicating that
the next word should be printed with the
first letter capitalized.

SYNTAX: print capital <address>

where <address> is any dictionary word, such
as, for example, an object.name property.

CASE

DESCRIPTION: Specifies a conditional case in a SELECT
structure.

SYNTAX: select <val>
case <case1>[, <case2>,...]

...
case <case3>[, <case4>,...]

...

where <val> is value such as a variable,
routine return value, object property, array
element, etc., and each <case> is a single
value for comparison (not an expression).

CHILD

SYNTAX: x = child(<parent>)

RETURN VALUE: The object number of the immediate child
object of <parent>, or 0 if <parent> has
no children.

CHILDREN

SYNTAX: x = children(<parent>)

RETURN VALUE: The number of objects possessed by
<parent>.

CLS

DESCRIPTION: Clears the screen (i.e. the text window)
and repositions the output coordinates at
the bottom left of the text window.

SYNTAX: cls

COLOR

DESCRIPTION: Sets the display colors for text output.

HugoManual 88 / 128

SYNTAX: color <foreground>[, <background>]

where <background> is optional

PARAMETERS: Standard color values for <foreground> and
<background> are:

0 Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 White
8 Dark gray
9 Light blue
10 Light green
11 Light cyan
12 Light red
13 Light magenta
14 Light yellow
15 Bright white

DICT

DESCRIPTION: Dynamically creates a new dictionary entry
at runtime.

SYNTAX: x = dict(<array>, <maxlen>)

x = dict(parse$, <maxlen>)

where <array> or parse$ holds the string to be
written into the dictionary, and <maxlen>
represents the maximum number of characters to
be written. Returns the new dictionary
address. (NOTE: Space should be reserved for
any dictionary entries to be created at runtime
using the $MAXDICTEXTEND setting during
compilation.)

DO

DESCRIPTION: Marks the starting point of a DO-WHILE
loop.

SYNTAX: do
{

...
}
while <expr>

The loop will continue to run as long as <expr>
holds true.

HugoManual 89 / 128

ELDER

SYNTAX: x = elder(<object>)

RETURN VALUE: The object number of the object preceding
<object> on the same branch in the object
tree. The reverse of SIBLING.

ELDEST

Same as
CHILD

.

ELSE

DESCRIPTION: In an IF-ELSEIF-ELSE conditional block,
indicates the default operation if no
previous condition has been met.

SYNTAX: if <condition>
...

else
...

ELSEIF

DESCRIPTION: In an IF-ELSEIF-ELSE conditional block,
indicates a condition that will be checked
only if no preceding condition has been
met.

SYNTAX: if <condition1>
...

elseif <condition2>
...

elseif <condition3>
...

FALSE

DESCRIPTION: A predefined constant value: 0.

FOR

DESCRIPTION: Loop construction.

SYNTAX: for (<initial>; <test>; <mod>)
{

...
}

HugoManual 90 / 128

for <var> in <object>
{

...
}

For the first form, where <initial> is the
initial assignment expression (e.g. a = 1),
<test> is the test expression (e.g. a < 10),
and <mod> is the modifying expression (e.g. a
= a + 1). The loop will execute as long as
<test> holds true.

The second form loops through all the children
of <object> (if any), setting <var> to each
child object in sequence.

GRAPHICS

Turns on graphics mode; not supported in Hugo v2.x.

HELD

DESCRIPTION: Object specifier in grammar syntax line,
indicating that any single object
possessed by the player object is valid.

HEX

DESCRIPTION: Print statement modifier signifying that
the following value is not a dictionary
address, but should be printed as a
hexadecimal number.

SYNTAX: print hex <var>

where, for example, <var> is equal to 26, will
print "1A".

IF

DESCRIPTION: A conditional expression.

SYNTAX: if <condition>
...

where <condition> is an expression or value,
will run the following statement block only if
<condition> is true.

IN

HugoManual 91 / 128

DESCRIPTION: When used in an object definition, places
the object in the object tree as a
possession of the specified parent. When
used in an expression, returns true if the
object is in the specified parent.

SYNTAX: in <parent>

or

<object> [not] in <parent>

INPUT

DESCRIPTION: Receive input from keyboard, storing the
dictionary addresses of the individual
words in the word array. Unrecognized
words are given a value of 0.

SYNTAX: input

IS

DESCRIPTION: Attribute assignment/testing.

SYNTAX: <object> is [not] <attribute>

USAGE: When used as an assignment on its own, will set
(or clear, if NOT is used) the specified
attribute for the given object. May also be
used in an expression.

RETURN VALUE: When used in an expression, returns true
if <object> has the specified attribute
set (or cleared, if NOT is used).
Otherwise, it returns false.

JUMP

DESCRIPTION: Jumps to a specified label.

SYNTAX: jump <label>

where a unique <label> exists on a separate
line somewhere in the program, in the form:

:<label>

LOCAL

DESCRIPTION: Defines one or more variables local to the
current routine.

HugoManual 92 / 128

SYNTAX: local <var1>[, <var2>, <var3>,...]

LOCATE

DESCRIPTION: Sets the cursor position.

SYNTAX: locate(<row>, <column>)

NOTE: Screen size limits are undefined by the engine.

MOVE

DESCRIPTION: Moves an object with all its possessions
to a new parent.

SYNTAX: move <object> to <new parent>

MULTI

DESCRIPTION: Object specifier in grammar syntax line,
indicating that multiple available objects
are valid.

MULTIHELD

DESCRIPTION: Object specifier in grammar syntax line,
indicating that multiple objects possessed
by the player object are valid.

MULTINOTHELD

DESCRIPTION: Object specifier in grammar syntax line,
indicating that multiple objects
explicitly not held by the player object
are valid.

NEARBY

DESCRIPTION: Used in an object definition to place the
object in the specified position in the
object tree.

SYNTAX: nearby <object>

Gives the current object the same parent as
<object>.

nearby

Gives the current object the same parent as the

HugoManual 93 / 128

last-defined object.

NEWLINE

DESCRIPTION: Print statement modifier, indicating that
a line feed and carriage return should be
issued if the current output position is
not already at the start of a blank line.

SYNTAX: print newline

NOT

DESCRIPTION: Logical not.

SYNTAX: x = not <value>

<object> is not <attribute>

RESULT: In the first example, x will be true if <value>
is false, or false if <value> is true.

In the second, the specified attribute will be
cleared for <object> when used alone as an
assignment. As part of an expression, it will
return true only if <object> does not have
<attribute> set.

NOTHELD

DESCRIPTION: Object specifier in grammar syntax line,
indicating that a single object explicitly
not held by the player object is valid.

NUMBER

DESCRIPTION: When used in a grammar syntax line,
indicates that a single positive integer
number is valid.

When used as a print statement modifier,
indicates that the following value is not
a dictionary address, but should be
printed as a positive integer number.

SYNTAX: (for usage as a print statement modifier)

print number <val>

where, for example, <val> is equal to 100, will
print "100" instead of the word beginning at
the address 100 in the dictionary table.

HugoManual 94 / 128

OBJECT

DESCRIPTION: Global variable holding the object number
of the direct object, if any, specified in
the input line.

When used in a grammar syntax line,
indicates that a single available object
is valid.

OR

DESCRIPTION: Logical or.

SYNTAX: x = <value1> or <value2>

RESULT: x will be true if either <value1> or <value2>
is non-false, false if both are false.

PARENT

(Usage 1)

SYNTAX: x = parent(<object>)

RETURN VALUE: The object number of <object>’s parent
object.

(Usage 2)

DESCRIPTION: When used in a grammar syntax line,
indicates that the domain for validating
the availability of the specified direct
object should be set to the parent object
specified in the input line.

PARSE$

DESCRIPTION: Engine variable, usable only in a PRINT
statement or in conjunction with STRING
or DICT, which contains either the
offending portion of an invalid input line
or any section of the input line enclosed
in quotes.

SYNTAX: print parse$

PAUSE

DESCRIPTION: Pauses until a key is pressed. The ASCII
value of the key is stored in word[0].

HugoManual 95 / 128

PLAYBACK

DESCRIPTION: Plays back recorded commands from a file
in place of keyboard input.

SYNTAX: x = playback

RETURN VALUE: True if successful, false if not.

PRINT

DESCRIPTION: Print text output.

SYNTAX: print <output>

where <output> can consist of both test strings
enclosed in quotation marks ("..."), and values
representing dictionary addresses, such as
object names. Separate components of <output>
are separated by a semicolon (";"). Each
component may also be preceded by a modifier
such as CAPITAL, HEX, or NUMBER.

PRINTCHAR

DESCRIPTION: Prints an ASCII character or series of
characters at the current cursor position.
No newline is printed.

SYNTAX: printchar <val1>[, <val2>,...]

QUIT

DESCRIPTION: Terminates the game loop.

SYNTAX: quit

RANDOM

DESCRIPTION: Engine function which generates a random
number.

SYNTAX: x = random(<val>)

RETURN VALUE: Where <val> is a positive integer number,
will return a random number between 1 and
<val>, inclusively.

READFILE

HugoManual 96 / 128

DESCRIPTION: A structure that allows values to be read
from a file written using writefile.

SYNTAX: readfile <filename>
{

...
}

The file is opened and positioned to the start
at the beginning of the readfile block, and
closed at the end.

READVAL

DESCRIPTION: Reads a value in a readfile block.

SYNTAX: x = readval

RETURN VALUE: The value read, or 0 in the case of an
error. Use the FILE_CHECK constant
defined in HUGOLIB.H to determine if a
readfile block has been executed
successfully. See the section above on

Reading and Writing Files
.

RECORDOFF

DESCRIPTION: Ends recording commands to a file.

SYNTAX: x = recordoff

RETURN VALUE: True if successful, false if not.

RECORDON

DESCRIPTION: Begins recording commands to a file.

SYNTAX: x = recordon

RETURN VALUE: True if successful, false if not.

REMOVE

DESCRIPTION: Removes an object from the object tree.

SYNTAX: remove <object>

(The same as: move <object> to 0)

RESTART

HugoManual 97 / 128

DESCRIPTION: Reloads the initial game data and calls
the Init routine.

SYNTAX: x = restart

NOTE: RESTART does not technically restart the
engine; the game loop continues uninterrupted
after Init is called, only with the game data
restored to its initial state.

RETURN VALUE: True if successful, false if not.

RESTORE

DESCRIPTION: Restores a saved game by calling the
engine’s restore routine.

SYNTAX: x = restore

RETURN VALUE: True if successful, false if not.

RETURN

DESCRIPTION: Returns from a called routine.

SYNTAX: return [<expression>]

RETURN VALUE: Returns <expression> if provided,
otherwise returning false.

RUN

DESCRIPTION: Runs an object property routine if one
exists.

SYNTAX: run <object>.<property>

RETURN VALUE: None; any value returned by the property
routine is discarded.

RUNEVENTS

DESCRIPTION: Calls all events which are either global
or currently within the event scope of the
player object.

SYNTAX: runevents

SAVE

DESCRIPTION: Saves the current game position by calling

HugoManual 98 / 128

the engine’s save routine.

SYNTAX: x = save

RETURN VALUE: True if successful, false if not.

SCRIPTOFF

DESCRIPTION: Turns transcription off.

SYNTAX: x = scriptoff

RETURN VALUE: True if successful, false if not.

SCRIPTON

DESCRIPTION: Turns transcription on by calling the
engine’s transcription routine.

SYNTAX: x = scripton

RETURN VALUE: True if successful, false if not.

SELECT

DESCRIPTION: Specifies the value for comparison in a
SELECT-CASE conditional structure.

SYNTAX: select <val>
case <case1>[, <case2>,...]

...
case <case3>[, <case4>,...]

...

where <val> is value such as a variable,
routine return value, object property, array
element, etc., and each <case> is a single
value for comparison (not an expression).

SERIAL$

DESCRIPTION: Engine variable, usable only in a print
statement, which contains the serial
number as written by the compiler.

SYNTAX: print serial$

SIBLING

SYNTAX: x = sibling(<object>)

RETURN VALUE: The number of the object next to <object>

HugoManual 99 / 128

on the same branch of the object tree.

STRING

DESCRIPTION: When used in a grammar syntax line,
indicates that a string array enclosed in
quotation marks is valid.

When used as a function, stores a
dictionary entry in a string array.

SYNTAX: x = string(<array>, <dict>, <maxlen>)

x = string(<array>, parse$, <maxlen>)

where <array> is an array address, stores the
either the dictionary entry given by <dict> or
the contents of parse$ as a series of ASCII
characters, to a maximum of <maxlen>
characters. Returns the length of the string
stored in <array>.

TEXT

Turns on text mode; not supported in Hugo v2.x.

text to <val> Sends text to the array table, beginning
at address <val>.

text to 0 Restores normal printing.

TO

DESCRIPTION: In a PRINT statement, prints blank spaces
in the current background color to the
specified position.

SYNTAX: print to <val>

where <val> is a positive integer less than or
equal to the maximum column position

TRUE

DESCRIPTION: Predefined constant: 1.

UNDO

DESCRIPTION: Attempts to recover the state of the game
data before the last player command.

SYNTAX: x = undo

HugoManual 100 / 128

RETURN VALUE: True if successful, false if not.

VERB

DESCRIPTION: Begins definition of a regular verb. Upon
returning true from the verb routine, Main
is called.

SYNTAX: verb "<word1>"[, "<word2>",...]

WHILE

DESCRIPTION: Component of WHILE or DO-WHILE loop
construct.

SYNTAX: while <expr>
...

(or)

do
...

while <expr>

where the loop will run as long as <expr> holds
true.

WINDOW

DESCRIPTION: Switches output to the status window.

SYNTAX: window
{

...
}

where the routine in braces following WINDOW
will send its output to the status window,
beginning at the top-left corner of the screen.
The current output position upon exiting the
window routine will become the new bottom of
the window.

WRITEFILE

DESCRIPTION: A structure that writes values to a file
that may be read using readfile.

SYNTAX: writefile <filename>
{

...
}

HugoManual 101 / 128

The file is opened and positioned to the start
at the beginning of the writefile block, and
closed at the end.

WRITEVAL

DESCRIPTION: Writes one or more values in a writefile
block.

SYNTAX: writefile value1[, value2, ...]

XOBJECT

DESCRIPTION: Global variable holding the object number
of the indirect object, if any, specified
in the input line.

When used in a grammar syntax line,
indicates that a single available object
is valid.

XVERB

DESCRIPTION: Begins definition of non-action verb.
Upon returning from the verb routine, Main
is not called.

SYNTAX: xverb "<word1>"[,"<word2>",...]

YOUNGER

Same as
SIBLING

.

YOUNGEST

SYNTAX: x = youngest(<parent>)

RETURN VALUE: The number of the object most recently
added to parent <parent>.

HugoManual 102 / 128

1.13 APPENDIX B: THE LIBRARY (HUGOLIB.H)

APPENDIX B: THE LIBRARY (HUGOLIB.H)

ATTRIBUTES

known if an object is known to the player
moved if an object has been moved
visited if a room has been visited
static if an object cannot be taken
plural for plural objects (i.e. some hats)
living if an object is a character
female if a character is female
unfriendly if a character is unfriendly
openable if an object can be opened
open if it is open
lockable if an object can be locked
locked if it is locked
light if an object is or provides light
readable if an object can be read
switchable if an object can be turned on or off
switchedon if it is on
clothing for objects that can be worn
worn if the object is being worn
mobile if the object can be rolled, etc.
enterable if an object is enterable
container if an object can hold other objects
platform if other objects can be placed on it

(NOTE: container and platform are
mutually exclusive)

hidden if an object is not to be listed
quiet if container or platform is quiet (i.e. the

initial listing of contents is suppressed)
transparent if object is not opaque
already_listed if object has been pre-listed (i.e. before,

for example, a WhatsIn listing)
workflag for system use
special for miscellaneous use

GLOBALS, CONSTANTS, AND ARRAYS

GLOBALS:

HugoManual 103 / 128

The first 10 globals are pre-defined by the compiler:

object direct object of a verb action
xobject indirect object
self self-referential object
words total number of words
player the player object
actor player, or another char. (for scripts)
location location of the player object
verbroutine the verb routine
endflag if not false (0), run EndGame
prompt for input line
objects the total number of objects
linelength the maximum length of a line of text
pagelength the maximum number of lines in the window

MAX_SCORE total possible score
MAX_RANK up to x levels of player ranking
FORMAT specifies text-printing format
DEFAULT_FONT usually 0; could be, for example, PROP_ON
STATUSTYPE 0=none, 1=score/turns, 2=time
DISPLAYTYPE 0=text, 1=graphics
TEXTCOLOR normal text color
BGCOLOR normal background color
BOLDCOLOR color for boldface printing
SL_TEXTCOLOR statusline text color
SL_BGCOLOR statusline background color
INDENT_SIZE for paragraph indenting
AFTER_PERIOD number of spaces following a full-stop
counter elapsed turns (or time, as desired)
score accumulated score
verbosity for room descriptions
nest used by ListObjects
light_source in location
event_flag set when something happens
speaking if the player is talking to a char.
old_location whenever location changes
obstacle if something is stopping the player
best_parse_rank for differentiating like-named objects
customerror_flag true once CustomError is called
need_newline true when newline should be printed
override_indent true if no indent should be printed
number_scripts number of active character scripts
it_obj to reference objects via pronouns
them_obj
him_obj
her_obj
general for general use

ARRAYS:

replace_pronoun[4] for it_obj, him_obj, etc.
oldword[MAX_WORDS] for "again" command
scriptdata[48] for object scripts
array setscript[1024] the actual scripts
array ranking[10] in tandem with scoring

HugoManual 104 / 128

CONSTANTS:

BANNER should be printed in every game header
MAX_SCRIPTS that may be active at one time
MAX_WORDS in a parsed input line

Color constants:

BLACK DARK GRAY
BLUE LIGHT_BLUE
GREEN LIGHT_GREEN
CYAN LIGHT_CYAN
RED LIGHT_RED
MAGENTA LIGHT_MAGENTA
BROWN YELLOW
WHITE BRIGHT_WHITE

Printing format masks (for setting FORMAT global):

LIST_F print itemized lists, not sentences
NORECURSE_F do not recurse object contents
NOINDENT_F do not indent listings
DESCFORM_F alternate room description formatting
GROUPPLURALS_F list plurals together where possible

Font style masks (for use with the Font routine):

BOLD_ON BOLD_OFF boldface
ITALIC_ON ITALIC_OFF italics
UNDERLINE_ON UNDERLINE_OFF underline
PROP_ON PROP_OFF proportional printing

Additional constants:

UP_ARROW LEFT_ARROW for reading keystrokes
DOWN_ARROW ENTER_KEY
RIGHT_ARROW ESCAPE_KEY

AND_WORD ("and") IN_WORD ("in")
ARE_WORD ("are") IS_WORD ("is")
HERE_WORD ("here") ON_WORD ("on")

FILE_CHECK for verifying writefile/readfile
operations

(The following are used only by specific routines:

ARRAYS:

_temp_array[256] used by string manipulation functions
menuitem[11] required by the Menu function

GLOBALS:

HugoManual 105 / 128

MENU_TEXTCOLOR normal menu text color
MENU_BGCOLOR normal menu background color
MENU_SELECTCOLOR menu highlight color
MENU_SELECTBGCOLOR menu highlight background color)

PROPERTIES

The first 6 properties are pre-defined by the compiler:

name basic object name
before pre-verb routines
after post-verb routines
noun (nouns) noun(s) for referring to object
adjective (adjectives) adjective(s) describing object
article "a", "an", "the", "some", etc.

preposition (prep) "in", "inside", "outside of", etc.,
used generally for room objects in
order to give a grammatically
correct description if necessary;
also for containers and platforms

pronoun "he", "him", "his" or equivalent, so
that an object is properly referred
to

short_desc routine; basic "X is here"
description

initial_desc routine; same as above, but if
object has not been moved and an
initial_desc exists, it is called in
place of short_desc

long_desc routine; detailed description

found_in in case of multiple parents,
found_in may hold one or more object
numbers; in this case, an IN
<object> specifier should not be
included in the object definition

type to identify the type of object, used
primarily by class definitions in
OBJLIB.H

size for holding/inventory purposes,
contains a value representing the
size of an individual object

capacity contains a value representing the
capacity of a container or platform

holding contains a value representing the

HugoManual 106 / 128

current encumbrance of a container
or platform

reach for enterable objects such as
chairs, vehicles, etc., if the
accessibility of objects outside the
object in question is limited, reach
contains a list of the objects which
may be accessed; if access is
limited to the object in question
only, reach must still contain at
least one non-false value (i.e. the
parent object itself)

list_contents a routine that overrides the normal
contents listing for a room or
object; normal listing is only
carried out if it returns false

in_scope contains a list of actors or objects
to which the object is accessible
beyond the use of the object tree or
the found_in property; generally
contains either the player object
(or, less commonly, another
character) and is set or cleared
using PutInScope or RemoveFromScope

parse_rank when there is ambiguity between
similarly named objects, the parser
will choose the one with a higher
parse_rank over one with a lower (or
non-existant) value

exclude_from_all returns true if the object should be
excluded from actions such as "get
all"

misc miscellaneous use

For room objects only:

n_to If a player can move to another
ne_to room object in direction X, then
e_to X_to holds the new room object
se_to
s_to
sw_to
w_to
nw_to
u_to
d_to
in_to
out_to

cant_go routine; message instead of default

HugoManual 107 / 128

"You can’t go that way."

For non-room objects only:

door_to for handling "Enter <object>", holds
the object number of the object to
which an object enters (where the
latter behaves as a door or portal)

key_object if lockable, contains the object
number of the key

when_open routines; short descriptions for
when_closed openable objects

If they exist, the appropriate
when_open/when_closed routine is
called instead of short_desc (if an
initial_desc does not exist, or if
the object has been moved)

ignore_response for characters, a routine that runs
if the character ignores a player’s
question, request, etc., instead of
the default "X ignores you."

order_response also for characters, a routine that
processes an imperative command
addressed to the character by the
player; it should return false if no
response is provided

contains_desc a routine that prints the
introduction to a list of child
objects, instead of the default
"Inside <object> are..." or
"<character> has..."; contains_desc
should always conclude with a
semicolon (";") instead of a new
line

inv_desc a routine that prints a special
description when the object is
listed as part of the player’s
inventory; inv_desc should conclude
with a semicolon (";")

desc_detail a routine that prints a
parenthetical detail following an
object listing, such as: " (which
is open)"; the leading space is
expected, as are the parentheses,
and the print statement should
conclude with a semicolon (";")

NOTE: It is recommended for property routines that print a

HugoManual 108 / 128

description--such as short_desc, initial_desc, etc.--that the
routine not simply return true without printing anything as a means
of "hiding" the object; such a method may throw text formatting into
disarray. The proper means of omitting an object from a list is to
set the hidden attribute.

ROUTINES

VERB ROUTINES

HUGOLIB.H contains a fairly extensive set of basic actions, each of
which takes the form Do<verb>, so that the action for taking an
object is DoGet, the action for basic player movement is DoGo, etc.

Each is called by the engine when a grammar syntax line specifying
the particular verb routine is matched. Globals object and xobject
are set up by the engine, and the routine is called with no
parameters.

Here is a list of the provided verb routines for action verbs:

DoAsk, DoAskQuestion, DoClose, DoDrop, DoEat, DoEnter, DoExit,
DoGet, DoGive, DoGo, DoHit, DoInventory, DoListen, DoLock,
DoLook, DoLookAround, DoLookIn, DoLookThrough, DoLookUnder,
DoMove, DoOpen, DoPutIn, DoShow, DoSwitchOff, DoSwitchOn,
DoTakeOff, DoTalk, DoTell, DoUnlock, DoVague, DoWait,
DoWaitforChar, DoWaitUntil, DoWear

Here are the non-action verb routines:

DoBrief, DoQuit, DoRestart, DoRestore, DoSave, DoScore,
DoScriptOnOff, DoSuperbrief, DoVerbose,

(NOTE: A set of verb stub routines is also available, including the
actions:

DoBurn, DoClimb, DoCut, DoDig, DoHelp, DoJump, DoKiss, DoNo,
DoPull, DoPush, DoSearch, DoSleep, DoSmell, DoSorry, DoSwim,
DoThrowAt, DoTie, DoTouch, DoUntie, DoUse, DoWake,
DoWakeCharacter, DoWave, DoWaveHands, DoYell, DoYes

The default response for each of these stub routines is a more
colorful variation of "Try something else." Any more meaningful
response must be incorporated into before property routines.

To use these verbs, include the file VERBSTUB.G with the other
grammar files, and VERBSTUB.H after HUGOLIB.H. HUGOLIB.H and
GRAMMAR.G do this automatically if the VERBSTUBS flag is set.)

UTILITY ROUTINES, ETC.

Routines may be treated as procedures or functions, given the idea
that procedures are more like commands, while functions are expected

HugoManual 109 / 128

to return a value, as in:

Procedure(a, b)
x = Function(y)
if Function()...

Library routines that do not return a value are generally meant to
be treated as procedures; those that do return a value may be
treated as either functions or procedures.

First, the junction routines:

EndGame called by the engine via:
EndGame(end_type)

If end_type = 1, the game is won; if 2, the
game is lost. (Since endflag may be any value,
a value of, for example, 3 will still call
EndGame, but with no additional effects via the
default PrintEndGame routine.) The global
endflag is cleared upon calling. Returning
false from EndGame terminates the Hugo Engine.

Also calls: PrintEndGame and PrintScore

FindObject called by the engine via:
FindObject(object, location)

Returns true (1) if the specified object is
available in the specified location, or false
(0) if it is not. Returns 2 if the object is
visible but not physically accessible.

Also calls: ObjectisKnown, ExcludeFromAll

Parse called by the engine via:
Parse()

Returning true forces the engine to re-parse
the modified input line.

Also calls: PreParse, AssignPronoun and
SetObjWord

ParseError called by the engine via:
ParseError(errornumber, object)

Returning false signals the engine to print the
default error message

May also call: CustomError

SpeakTo called by the engine via:
SpeakTo(character)

Globals object, xobject, and verbroutine are
set up as in a normal verb routine call.

HugoManual 110 / 128

Also calls: AssignPronoun

And the routines for grammatically-correct printing:

The calling form: The(object)

Prints the definite article form of the object
name, e.g. "the apple"

Art calling form: Art(object)

Prints the indefinite article form of the
object name, e.g. "an apple"

CThe calling form: CThe(object)

Prints the capitalized definite article form
of the object name, e.g. "The apple"

CArt calling form: CArt(object)

Prints the capitalized indefinite article form
of the object name, e.g. "An apple"

IsorAre calling form: IsorAre(object[, formal])
where the parameter formal is optional

Depending on whether or not the specified
object is plural or singular, prints "’re" or
"’s", respectively (or " are" or " is" if the
formal parameter is specified as true).

MatchSubject calling form: MatchSubject(object)

Matches a verb to the given subject <object>.
If the object is plural, nothing is printed;
if the object is singular, an "s" is printed.

NOTE: None of the above printing routines prints a carriage
return, and all return 0 (the null string). Therefore, either
of the following usages are valid:

CThe(apple)
print " is here."

or

print CThe(apple); " is here."

Other routines:

Acquire calling form:
Acquire(parent, object)

HugoManual 111 / 128

Checks to see if parent.capacity is
greater than or equal to parent.holding
plus object.size. If so, it moves object
to the specified parent, and returns true.
If the object cannot be moved, Acquire
returns false.

Also calls: CalculateHolding

AnyVerb calling form:
AnyVerb(object)

Returns object if the current verbroutine
is not an xverb; otherwise it returns
false.

AssignPronoun calling form:
AssignPronoun(object)

Sets the appropriate global it_obj,
them_obj, him_obj, or her_obj to the
specified object.

CalculateHolding calling form:
CalculateHolding(object)

Properly recalculates object.holding based
on the sizes of all held objects.

CenterTitle calling form:
CenterTitle(text)

Clears the screen and centers the text
given by the specified dictionary entry
in the top window.

CheckReach calling form:
CheckReach(object)

Checks to see if the specified object is
within reach of the player object.
Returns true if accessible; returns
false--and prints an appropriate
message--if not.

Contains calling form:
Contains(parent, object)

Returns <object> if the specified object
is present as a possession of the
specified parent, even as a grandchild.

CustomError calling form:
CustomError(errornumber, object)

REPLACE if custom error messages are
desired. Is called by ParseError whenever

HugoManual 112 / 128

errornumber is greater than or equal to
100, specifying a user parser error.
Should return false if no user message is
found.

DarkWarning calling form:
DarkWarning

Is called by MovePlayer whenever the
player object is moved into a location
without a light source. The default
library routine simply prints a message;
for a more sinister response, such as the
death of the player, REPLACE the default
with a new DarkWarning routine.

DeleteWord calling form:
DeleteWord(wordnumber[, number])

Deletes the number of words given by the
second argument--or only one word if no
second argument is given--starting with
word[wordnumber]. Returns the number of
words deleted.

DescribePlace calling form:
DescribePlace(location[, long])

Prints the location name and, when
appropriate, a location description.
Including a non-false long parameter will
force a location description.

ExcludeFromAll calling form:
ExcludeFromAll(object)

Returns true if, based on the current
circumstances (verbroutine, etc.), the
supplied object should be excluded from
actions using "all"--such as multi,
multiheld, and multinotheld grammar
tokens.

FindLight calling form:
FindLight(location)

Checks to see if a light source is
available in the player’s location; if so,
it sets the global light_source to the
object number of the source and returns
that value.

Also calls: ObjectIsLight

Font calling form:
Font(bitmask)

HugoManual 113 / 128

Sets the current font attributes as
specified by bitmask, where bitmask is one
or more font-style constants (see library

constants
, above) combined with "|" or

"+".

GetInput calling form:
GetInput([prompt string])

Receives input from the keyboard, storing
individual words in the word array;
unknown words--i.e. those that are not in
the dictionary--are assigned the null
string, 0 or "". If an argument is
passed, it is assumed to be a dictionary
address for the prompt string. If no
argument is passed, no prompt is printed.

HoursMinutes calling form:
HoursMinutes(counter)

Prints the time in hh:mm format given that
the global counter represents the time in
minutes from 12:00 a.m.

Indent calling form:
Indent

If the NOINDENT_F bit is not set in the
FORMAT mask, Indent prints two spaces
without printing a newline

InList calling form:
InList(object, property, value)

If <value> is in the list of values held
in <object>.<property>, returns the number
of the (first) property element equal to
<value>; otherwise returns 0.

InsertWord calling form:
InsertWord(wordnumber[, number])

Makes space for either the number of words
given by the number argument--or one word
if no second argument is given--if
possible, at word[wordnumber], shifting
upward all words from that point to the
end of the input line. Returns the number
of words inserted.

ListObjects calling form:
ListObjects(object)

Lists all the possessions of the specified

HugoManual 114 / 128

object in the appropriate form (according
to the global FORMAT). Possessions of
possessions are listed recursively if
FORMAT does not contain the NORECURSE_F
bit. Format masks are combined, as in:

FORMAT = LIST_F | NORECURSE_F | ...

Also calls: WhatsIn

Menu calling form:
Menu(number, [width])

Prints a menu, given that the possible
choices (up to 10) are contained in the
menuitem array, with menuitem[0] is the
title of the menu. Returns the number of
the item selected, or 0 if none is chosen.

Also calls: CenterTitle

Message calling form:
Message(&routine, num, a, b)

Used by most routines in HUGOLIB.H for
text output, so that the bulk of the
library text is centralized in one
location. Message number num for the
specified routine is printed; a and b are
optional parameters that may represent
objects, dictionary entries, or any other
value.

MovePlayer calling form:
MovePlayer(location[, silent[, none]])
MovePlayer(direction[, silent[, none]])

Moves the player to the new location,
properly setting all relevant variables
and attributes. If <silent> is specified
(as a true value), no room description is
printed following the move.

A direction object (i.e. n_obj, d_obj) may
be specified instead of a location; in
this instance, MovePlayer moves in that
direction from the player object’s present
location.

If <none> is true, before/after routines
are not run.

Can be checked in a location’s before or
after property as "location MovePlayer" to
catch a player’s exit from or entrance to
a location.

HugoManual 115 / 128

Returns the object number of the player
object’s new parent.

NOTE: MovePlayer does not check to see
if a move is valid; that must be done
before calling the routine.

May also call: DarkWarning

NumberWord calling form:
NumberWord(number[, true])

Prints a number in non-numerical word
format, where <number> is between -32767
to 32767. Always returns 0 (the null
string). If a second (true) argument is
supplied, the word is capitalized.

ObjectIs calling form:
ObjectIs(object)

Lists certain attributes, such as
providing light or being worn, of the
given object in parenthetical form.

ObjectisKnown calling form:
ObjectisKnown(object)

Returns true if the object is known to the
player.

ObjectisLight calling form:
ObjectisLight(object)

Returns true if the object or one of its
visible possessions is providing light.
If so, it also sets the global
light_source the object number of the
source.

ObjWord calling form:
ObjWord(word, object)

Returns either adjective or noun (i.e. the
property number) if the given is either an
adjective or noun of the specified object.

Perform calling form:
Perform(&routine, [object], [xobject])

Sets the verbroutine global (as well as
object and xobject, if specified), and
then calls the routine. Calls before and
after routines in accordance with the game
loop. Returns the value returned by the
routine, after resetting verbroutine,
object, and xobject to their previous

HugoManual 116 / 128

values.

PreParse calling form:
PreParse

Provided so that, if needed, this routine
may be REPLACED instead of the more
extensive library Parse routine. The
default routine defined in the library is
empty.

PrintEndGame calling form:
PrintEndGame(end_type)

Depending on whether end_type is 1 or 2,
prints "*** YOU’VE WON THE GAME! ***" or
"*** YOU ARE DEAD ***".

PrintScore calling form:
PrintScore(end_of_game)

Prints the score in the appropriate form,
depending on whether or not end_of_game is
true.

PrintStatusLine calling form:
PrintStatusLine

Prints the status line in the appropriate
format, according to the global
STATUSTYPE.

PropertyList calling form:
PropertyList(obj, property)

Lists the objects held in obj.property (if
any), returning the number of objects
listed.

PutInScope calling form:
PutInScope(object, actor)

Makes <object> accessible to <actor>,
regardless of their respective locations,
and providing that the in_scope property
of <object> has at least one empty
slot--i.e. one that equals 0. Returns
true if successful.

RemoveFromScope calling form:
RemoveFromScope(object, actor)

Removes <object> from the scope of
<actor>. Returns true if successful, or
false if <object> was never in scope of
<actor> to begin with.

HugoManual 117 / 128

SetObjWord calling form:
SetObjWord(position, object)

Inserts the specified object in the word
array in the format:
"adjective1 adjective2...noun"

ShortDescribe calling form:
ShortDescribe(object)

Prints the short description of the given
object, first checking to see if it should
run initial_desc, when_open, or
when_closed, as appropriate. Then, if no
short_desc property exists, it prints a
default "X is here."

Also calls: WhatsIn

SpecialDesc calling form:
SpecialDesc(object)

Checks each child object of <object>,
running any appropriate initial_desc or
inv_desc property routines. Sets the
global variable list_count to the number
of remaining (i.e. non-listed) objects.

WhatsIn calling form:
WhatsIn(parent)

Lists the possessions of the specified
parent, according the form given by the
global FORMAT. Returns the number of
objects listed.

Also calls: SpecialDesc, ListObjects

YesorNo calling form:
YesorNo

Checks to see if the just-received input
is "yes", "y", "no", or "n". If none of
the above, it prompts for a yes or no
answer. Once a valid answer is received,
it returns true (if yes) or false (if no).

AUXILIARY MATH ROUTINES

higher calling form:
higher(a, b)

Returns the higher number of <a> or .

lower calling form:

HugoManual 118 / 128

lower(a, b)

Returns the lower number of <a> or .

mod calling form:
mod(a, b)

Returns the remainder of <a> divided by
.

pow calling form:
pow(a, b)

Returns <a> to the power of . (The
return value is unpredictable if the
result is outside the boundary of -32767
to 32767.)

STRING ARRAY ROUTINES

StringCompare calling form:
StringCompare(array1, array2)

Returns 1 if <array1> is lexically greater
than <array2>, -1 if <array1> is lexically
less than <array2>, and 0 if the strings
are identical.

StringCopy calling form:
StringCopy(new, old[, len])

Copies the contents of the array at the
address given by <old> to the array at
<new>, to a maximum of <len> characters
if <len> is given, or the length of <old>
if it isn’t.

StringDictCompare calling form:
StringDictCompare(array, dictentry)

Performs a StringCompare-like comparison
of a string array given by <array> and the
dictionary entry <dictentry>, returning 1,
-1, or 0 if <array> is lexically greater
than, less than, or equal to <dictentry>,
respectively.

StringEqual calling form:
StringEqual(array1, array2)

Returns true only if <array1> and <array2>
are identical.

StringLength calling form:
StringLength(array)

HugoManual 119 / 128

Returns the length of the string stored
as <array>.

StringPrint calling form:
StringPrint(array[, start, end])

Prints the string stored as <array>,
beginning with <start> and ending with
<end> if given.

FUSE/DAEMON ROUTINES

(See the earlier section on
fuses and daemons
for more

information.)

Activate calling form:
Activate(object[, setting])

Activates the specified fuse or daemon
object. The setting value is only
specified for fuses, where it represents
the initial value of the timer property.

Deactivate calling form:
Deactivate(object)

Deactivates the specified fuse or daemon
object.

CHARACTER SCRIPT ROUTINES

(See the earlier section on
character scripts
for more

information.)

CancelScript calling form:
CancelScript(character)

Immediately cancels the character script
associated with the object <character>.
Returns true if successful, i.e. if a
script for <character> is found.

PauseScript calling form:
PauseScript(character)

Temporarily pauses the character script
associated with the object <character>.
Returns true if successful.

ResumeScript calling form:
ResumeScript(character)

HugoManual 120 / 128

Resumes execution of a paused script.
Returns true if successful.

SkipScript calling form:
SkipScript(character)

Skips execution of the script for
<character> during the next call to
RunScripts only.

Script calling form:
Script(character, steps)

Initializes space for the requested number
of steps in the setscript array, sets up
the data for the script in the scriptdata
array, and returns the location of the
script in setscript. Returns -1 if
MAX_SCRIPTS is exceeded.

RunScripts calling form:
RunScripts

Runs all active scripts, calling them in
the form:

CharRoutine(character, object)

CHARACTER ACTION ROUTINES

As a starting point, the library also provides a limited number of
routines for character objects to use in scripts. They are:

&CharWait, 0

&CharMove, direction_object (requires OBJLIB.H)

&CharGet, object

&CharDrop, object

and

&LoopScript, 0

CONDITIONAL COMPILATION

A number of compiler flags may be set which exclude certain portions
of HUGOLIB.H from compilation if these functions or objects are not
required.

FLAG: EXCLUDES:

HugoManual 121 / 128

NO_AUX_MATH Auxiliary math routines
NO_FUSES Fuses AND daemons
NO_MENUS Use of the Menu function
NO_OBJLIB OBJLIB.H
NO_RECORDING Command recording functions
NO_SCRIPTS Character scripting routines
NO_STRING_ARRAYS String array functions
NO_VERBS All action verbs
NO_XVERBS All non-action verbs

1.14 APPENDIX C: LIMIT SETTINGS

APPENDIX C: LIMIT SETTINGS

NOTE: The default settings for the complete set of limits may be
obtained by invoking the compiler via:

hc $list

(The following limits are static and non-modifiable, since they
reflect the internal configuration of the Hugo Engine:

MAXATTRIBUTES The maximum number of definable
attributes, not counting aliases

MAXGLOBALS The maximum number of definable global
variables

MAXLOCALS The maximum number of local variables
allowed in a routine, including arguments
passed to the routine)

The following are the modifiable settings, which may be setting
using:

$<setting>=<new limit>

either in the invocation line or in the source code.

MAXALIASES The maximum number of aliases that may be
defined for attributes and/or properties

MAXARRAYS The maximum number of arrays that may be
defined (not the total array space, which
is automatically reserved)

MAXCONSTANTS The maximum number of constants

MAXDICT The maximum number of entries that the
compiler can enter into the dictionary
table

HugoManual 122 / 128

MAXDICTEXTEND The total number of bytes (not the total
number of entries) available for dynamic
dictionary extension during runtime

MAXEVENTS The maximum number of global or object-
linked events

MAXFLAGS The maximum number of compiler flags that
may be set at one time to control
conditional compilation

MAXLABELS The maximum number of labels that may be
defined in an entire program

MAXOBJECTS The maximum number of objects and/or
classes that may be created

MAXPROPERTIES The maximum number of properties that may
be defined

MAXROUTINES The maximum number of stand-alone routines
(not property routines) that may be
defined

1.15 APPENDIX D: PRECOMPILED HEADERS

APPENDIX D: PRECOMPILED HEADERS

It is possible to compile files that would normally be included
using the #include directive into a precompiled header file that may
be linked using #link, as in:

#link "<filename.HLB>"

The advantage of doing this is primarily one of faster compilation
speed; files that are used over and over again without alteration
(such as HUGOLIB.H) may be precompiled so that they are not
recompiled every time.

The #link directive must come after any grammar, but before any
definitions of attributes, properties, globals, objects, synonyms,
etc. Grammar is illegal in a precompiled header.

To create a precompiled header, use the -h directive when invoking
the Hugo Compiler. The file HUGOLIB.HUG serves as a good example.
Compile it via

hc -h hugolib.hug

in order to generate HUGOLIB.HLB.

Next, change occurrences of

HugoManual 123 / 128

#include "hugolib.h"

in Hugo programs to

#link "hugolib.hlb"

Change the definition for the main routine from

routine main
{...

to

replace main
{...

since HUGOLIB.HUG contains a temporary main routine.

NOTE: Any conditional compilation flags set in the Hugo program
will have no effect on the compiled code in HUGOLIB.HLB, since the
routines included in or excluded from HUGOLIB.HLB are determined by
the flags set in HUGOLIB.HUG. It is recommended that a Hugo user
using precompiled headers compile a version of HUGOLIB.HUG that
includes HUGOFIX.H and/or VERBSTUB.H as desired.

It is generally not possible to include multiple precompiled .HLB
headers compiled in separate passes via subsequent #links in the
same source file. Because of the absolute references assigned to
data such as dictionary addresses, attribute numbers, etc., such an
attempt will produce an "Incompatible precompiled headers" error.

However, for games that are composed of separate sections that can
be combined into distinct files, it may make sense to precompile one
.HUG file containing all the common elements that will be used by
the separate sections--such as the player object, etc.--and which
#includes or #links the library in it. Then, this new .HLB file can
be #linked in each of the separate sections during development and
testing. Of course, each of the separate sections will have to be
#included in a single master file for building the full release
version.

Finally, it is advisable that precompiled headers be used only in
building .HEX files during the design/testing stage in order to
facilitate faster development. The reason is that the linker does
not selectively include routine calls; the entire .HLB file is
loaded during the link phase. As a result, Hugo files produced
using precompiled headers--especially if existing routines in the
.HLB file are replaced in the source--tend to be larger and
therefore less economical in their memory usage. For this reason,
it is recommended that #include be used for building release
versions instead of #linking the corresponding precompiled header.

1.16 APPENDIX E: THE HUGO DEBUGGER

HugoManual 124 / 128

APPENDIX E: THE HUGO DEBUGGER

The Hugo Debugger is a valuable part of the Hugo design system. It
allows a programmer to monitor all aspects of program execution,
including watching expressions, modifying values, moving objects,
etc.--all things expected of a modern source-level debugger.

The Hugo Debugger is not technically a source-level debugger,
however. During its development, its author has referred to it as
a source(ish) level debugger--what the debugger does, in effect, is
to "decompile" compiled code into the tokens and symbols that
comprise each line of code.

In order to be used with the debugger, a Hugo program must be
compiled using the -d switch in order to create an .HDX debuggable
file with additional data such as names for objects, variables,
properties, etc.

(Note that .HDX files can be run by the engine, but .HEX files
cannot be run by the debugger because of the additional data
required.)

The MS-DOS convention for running the debugger is

hd <filename>

The debugger will begin on the debugging screen. Switch back-and-
forth from the actual game screen by pressing TAB.

At this point, it is probably best to select "Shortcut Keys" from
the Help menu, since the actual keystrokes for running the debugger
may vary from system to system. (It is possible to operate the
debugger entirely through menus, but this soon becomes tedious for
operations like stepping line-by-line.)

The file HDHELP.HLP should be in the same directory as HD.EXE--this
is the online help file for the debugger, containing information on
such things as:

Printing

Windows and Views, including
Code Window
Watch Window
Calls
Breakpoints
Local Variables
Property/Attribute Aliases
Auxiliary Window
Output

Running a program
Finish Routine
Stepping Through Code

HugoManual 125 / 128

Skipping Over Code
Stepping Backward

Searching Code
Watch Expressions
Setting or Modifying Values
Breakpoints
Object Tree
Moving Objects

Setup

1.17 Copyright

Hugo Compiler, Engine, Debugger, Library, and the Hugo Manual

Copyright (c) 1995-1997 by Kent Tessman

1.18 AmigaGuide® version

This AmigaGuide® version of the Hugo v2.3 Programming Manual
was made by Paolo Vece.

The text is unchanged from the original ASCII version
of this manual made by Kent Tessman.

I’ve just added the links to each paragraph, the Index of Keywords
and Commands and this short note.

This is my little contribution to the great work of Kent Tessman,
(and David Kinder for his Amiga port).

Paolo Vece
pvece@mclink.it

Hugo Compiler, Engine, Debugger, Library, and the Hugo Manual

Copyright (c) 1995-1997 by Kent Tessman

1.19 INDEX

INDEX OF KEYWORDS AND COMMANDS

HugoManual 126 / 128

AND

GRAPHICS

OBJECT

RUNEVENTS

YOUNGER

ANYTHING

HELD

OR

SAVE

YOUNGEST

ARRAY

HEX

PARENT

SCRIPTOFF

BREAK

IF

PARSE$

SCRIPTON

CALL

IN

PAUSE

SELECT

CAPITAL

INPUT

PLAYBACK

SERIAL$

CASE

IS

PRINT

HugoManual 127 / 128

SIBLING

CHILD

JUMP

PRINTCHAR

STRING

CHILDREN

LOCAL

QUIT

TEXT

CLS

LOCATE

RANDOM

TO

COLOR

MOVE

READFILE

TRUE

DICT

MULTI

READVAL

UNDO

DO

MULTIHELD

RECORDOFF

VERB

ELDER

MULTINOTHELD

RECORDON

HugoManual 128 / 128

WHILE

ELDEST

NEARBY

REMOVE

WINDOW

ELSE

NEWLINE

RESTART

WRITEFILE

ELSEIF

NOT

RESTORE

WRITEVAL

FALSE

NOTHELD

RETURN

XOBJECT

FOR

NUMBER

RUN

XVERB

	HugoManual
	HUGO v2.3 PROGRAMMING MANUAL
	INTRODUCTION
	A FIRST LOOK AT HUGO
	OBJECTS
	HUGO PROGRAMMING
	ROUTINES AND EVENTS
	FUSES, DAEMONS, AND SCRIPTS
	GRAMMAR AND PARSING
	JUNCTION ROUTINES
	THE GAME LOOP
	ADVANCED FEATURES
	APPENDIX A: SUMMARY OF KEYWORDS AND COMMANDS
	APPENDIX B: THE LIBRARY (HUGOLIB.H)
	APPENDIX C: LIMIT SETTINGS
	APPENDIX D: PRECOMPILED HEADERS
	APPENDIX E: THE HUGO DEBUGGER
	Copyright
	AmigaGuide® version
	INDEX

